scholarly journals Antibacterial and Antibiofilm Activity of Myrtenol against Staphylococcus aureus

2020 ◽  
Vol 13 (6) ◽  
pp. 133
Author(s):  
Laísa Cordeiro ◽  
Pedro Figueiredo ◽  
Helivaldo Souza ◽  
Aleson Sousa ◽  
Francisco Andrade-Júnior ◽  
...  

The increase in Staphylococcus aureus resistance to conventional antibacterials and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, has made the development of new therapeutic alternatives necessary. Medicinal plants are one of the main sources of bioactive molecules and myrtenol is a natural product with several biological activities, although its antimicrobial activity is little explored. Based on this, the objective of this study was to evaluate the antibacterial activity of myrtenol against S. aureus, determining the minimum inhibitory and bactericidal concentrations (MIC and MBC), investigating the possible molecular target through the analysis of molecular docking. It also aimed to evaluate the effect of its combination with antibacterial drugs and its activity against S. aureus biofilms, in addition to performing an in silico analysis of its pharmacokinetic parameters. Myrtenol showed MIC and MBC of 128 µg/mL (bactericidal action) and probably acts by interfering with the synthesis of the bacterial cell wall. The effects of the association with antibacterials demonstrate favorable results. Myrtenol has remarkable antibiofilm activity and in silico results indicate a good pharmacokinetic profile, which make myrtenol a potential drug candidate for the treatment of infections caused by S. aureus.

2020 ◽  
Vol 21 (12) ◽  
pp. 4531 ◽  
Author(s):  
Laísa Cordeiro ◽  
Pedro Figueiredo ◽  
Helivaldo Souza ◽  
Aleson Sousa ◽  
Francisco Andrade-Júnior ◽  
...  

Staphylococcus aureus is able to rapidly develop mechanisms of resistance to various drugs and to form strong biofilms, which makes it necessary to develop new antibacterial drugs. The essential oil of Melaleuca alternifolia is used as an antibacterial, a property believed to be mainly due to the presence of terpinen-4-ol. Based on this, the objective of this study was to evaluate the antibacterial and antibiofilm potential of terpinen-4-ol against S. aureus. The Minimal Inhibitory and Minimal Bactericidal Concentrations (MIC and MBC) of terpinen-4-ol were determined, and the effect of its combination with antibacterial drugs as well as its activity against S. aureus biofilms were evaluated. In addition, an in silico analysis of its pharmacokinetic parameters and a molecular docking analysis were performed. Terpinen-4-ol presented a MIC of 0.25% (v/v) and an MBC of 0.5% (v/v) (bactericidal action); its association with antibacterials was also effective. Terpinen-4-ol has good antibiofilm activity, and the in silico results indicated adequate absorption and distribution of the molecule in vivo. Molecular docking indicated that penicillin-binding protein 2a is a possible target of terpinen-4-ol in S. aureus. This work highlights the good potential of terpinen-4-ol as an antibacterial product and provides support for future pharmacological studies of this molecule, aiming at its therapeutic application.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. P. Sousa ◽  
D. A. Fernandes ◽  
M. D. L. Ferreira ◽  
L. V. Cordeiro ◽  
M. F. V. Souza ◽  
...  

Abstract Tiliroside is a glycosidic flavonoid present in many plants species including Helicteres velutina K. Schum (Malvaceae sensu lato), commonly known in Brazil as “pitó”. This molecule has been shown to have many biological activities, however no study has been carried out to investigate the toxicity of this substance. The present work aimed to evaluate the possible cellular toxicity in silico, in vitro and ex-vivo of the kaempferol-3-O-β-D-(6”-E-p-coumaroyl) glucopyranoside (tiliroside), through chemical structure analysis, toxicity assessment and predictive bioactive properties, using human samples for in vitro and ex-vivo tests. The in silico analysis suggests that tiliroside exhibited great absorption index when penetrating biological membranes. In addition, it also displayed considerable potential for cellular protection against free radicals, and anticarcinogenic, antioxidant, antineoplastic, anti-inflammatory, anti-hemorrhagic and antithrombotic activities. The assessment of the hemolytic and genotoxic effects of tiliroside showed low hemolysis rates in red blood cells and absence of cellular toxicity in the oral mucosa cells. The data obtained indicate that this molecule could be a promising therapeutic approach as a possible new drug with biotechnological potential.


Author(s):  
Hima Vyshnavi ◽  
Gayathri S. S. ◽  
Shahanas Naisam ◽  
Suvanish Kumar ◽  
Nidhin Sreekumar

In this pandemic condition, a drug candidate which is effective against COVID-19 is very much desired. This study initiates an in silico analysis to screen small molecules such as phytochemicals, drug metabolites, and natural metabolites against Nsp12 (a catalytic unit for RNA transcription and replication). Molecular interaction analysis of 6M71 was carried out against 2,860 ligands using Schrodinger Glide software. After docking analysis, the top 10 molecules (Glide score) were subjected to MD simulation for validating the stability. It resulted in top 10 compounds with high binding affinities with the target molecule NSP 12. Out of these, top 3 compounds including PSID_08_LIG3 (HMDB0133544), PSID_08_LIG4 (HMDB0132898), and PSID_08_LIG9 (HMDB0128199) show better Glide scores, better H-bond interaction, better MMGBSA value and stability on dynamic simulation after analysis of the results. The suggested ligands can be postulated as effective antiviral drugs against COVID-19. Further in vivo analysis is needed for validating the drug efficacy.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
M. I. Nasser ◽  
Shuoji Zhu ◽  
Chen Chen ◽  
Mingyi Zhao ◽  
Huanlei Huang ◽  
...  

Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver’s stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1008-C1008
Author(s):  
Rita Kakou Yao ◽  
Jules Abodou Tenon ◽  
Akoun Abou

The work exposed in this paper joins in the research of medecine by means of the modelling by digital simulation (method in silico). This method allows to plan the biological activities of new molecules and to design others more active than existing molecules against a given infection . The generated and validated models are used here in the research for molecules potentially more active against Escherichia coli which causes diarrheic infections at the human beings. Here, we report works the synthesis of our works of structural determination, of forecast of biological activity and conception of molecules bioactive again Eschericha coli.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 730
Author(s):  
Nicolás Gómez-Sequeda ◽  
Marlon Cáceres ◽  
Elena E. Stashenko ◽  
William Hidalgo ◽  
Claudia Ortiz

The emergence of multidrug resistant microorganisms represents a global challenge due to the lack of new effective antimicrobial agents. In this sense, essential oils (EOs) are an alternative to be considered because of their anti-inflammatory, antiviral, antibacterial, and antibiofilm biological activities. Therefore, multiple efforts have been made to consider the potential use of EOs in the treatment of infections which are caused by resistant microorganisms. In this study, 15 EOs of both Colombian and introduced aromatic plants were evaluated against pathogenic strains of E. coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA) in planktonic and sessile states in order to identify relevant and promising alternatives for the treatment of microbial infections. Forty different compounds were identified in the 15 EO with nine of them constituted mainly by oxygenated monoterpenes (OM). EOs from Lippia origanoides, chemotypes thymol, and carvacrol, displayed the highest antibacterial activity against E. coli O157:H7 (MIC50 = 0.9 and 0.3 mg/mL, respectively) and MRSA (MIC50 = 1.2 and 0.6 mg/mL, respectively). These compounds from EOs had also the highest antibiofilm activity (inhibition percentage > 70.3%). Using scanning electron microscopy (SEM), changes in the size and morphology of both bacteria were observed when they were exposed to sub-inhibitory concentrations of L. origanoides EO carvacrol chemotype. EOs from L. origanoides, thymol, and carvacrol chemotypes represented a viable alternative for the treatment of microbial infections; however, the Selectivity Index (SI ≤ 3) indicated that it was necessary to study alternatives to reduce its in vitro cytotoxicity.


2014 ◽  
Vol 3 (2) ◽  
pp. 257-270 ◽  
Author(s):  
Jumpei Uchiyama ◽  
Iyo Takemura‐Uchiyama ◽  
Shin‐ichiro Kato ◽  
Miho Sato ◽  
Takako Ujihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document