scholarly journals Therapeutic Potential of Gramicidin S in the Treatment of Root Canal Infections

2016 ◽  
Vol 9 (3) ◽  
pp. 56 ◽  
Author(s):  
Marina Berditsch ◽  
Hannah Lux ◽  
Oleg Babii ◽  
Sergii Afonin ◽  
Anne Ulrich
2019 ◽  
Vol 87 (11) ◽  
Author(s):  
M. Al-Zubidi ◽  
M. Widziolek ◽  
E. K. Court ◽  
A. F. Gains ◽  
R. E. Smith ◽  
...  

ABSTRACTThe Gram-positive opportunistic pathogenEnterococcus faecalisis frequently responsible for nosocomial infections in humans and represents one of the most common bacteria isolated from recalcitrant endodontic (root canal) infections.E. faecalisis intrinsically resistant to several antibiotics routinely used in clinical settings (such as cephalosporins and aminoglycosides) and can acquire resistance to vancomycin (vancomycin-resistant enterococci). The resistance ofE. faecalisto several classes of antibiotics and its capacity to form biofilms cause serious therapeutic problems. Here, we report the isolation of several bacteriophages that targetE. faecalisstrains isolated from the oral cavity of patients suffering root canal infections. All phages isolated wereSiphoviridaewith similar tail lengths (200 to 250 nm) and icosahedral heads. The genome sequences of three isolated phages were highly conserved with the exception of predicted tail protein genes that diverge in sequence, potentially reflecting the host range. The properties of the phage with the broadest host range (SHEF2) were further characterized. We show that this phage requires interaction with components of the major and variant region enterococcal polysaccharide antigen to engage in lytic infection. Finally, we explored the therapeutic potential of this phage and show that it can eradicateE. faecalisbiofilms formedin vitroon a standard polystyrene surface but also on a cross-sectional tooth slice model of endodontic infection. We also show that SHEF2 cleared a lethal infection of zebrafish when applied in the circulation. We therefore propose that the phage described here could be used to treat a broad range of antibiotic-resistantE. faecalisinfections.


ChemMedChem ◽  
2022 ◽  
Author(s):  
Chengfei Hu ◽  
Quan Wen ◽  
Shuhui Huang ◽  
Saisai Xie ◽  
Yuanying Fang ◽  
...  

2018 ◽  
Vol 19 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Dajana Nogo-Zivanovic ◽  
Ljiljana Bjelovic ◽  
Vladimir Ivanovic ◽  
Tatjana Kanjevac ◽  
Irena Tanaskovic

AbstractThe main objective of endodontic treatment is to remove vital and necrotic remnants of pulp tissue and microorganisms and their toxic products from the root canal. During chemo-mechanical endodontic preparation, a smear layer is formed on the wall of the canals. Due to an inability to remove all tissue remnants and the smear layer from the root canal by mechanical instrumentation, it is necessary to use irrigation to ensure sufficient cleaning and disinfection of the largest part of the root canalicular system. The most commonly used irrigants are sodium hypochlorite (Na-OCl), ethylenediaminetetraacetic acid (EDTA), citric acid and chlorhexidine (CHX). Recently, the irrigants QMix and MTAD have been introduced to the market. They are a mixture of different components having antimicrobial, organolytic and mineralytic effects on canal detritus and the smear layer. This review article investigates irrigants in terms of the nature of their effect, their efficiency, optimal concentration, and method of use, and the interactions between the irrigants most commonly used in endodontic therapy are discussed, with special emphasis on QMix and MTAD.


ChemMedChem ◽  
2020 ◽  
Author(s):  
Chengfei Hu ◽  
Quan Wen ◽  
Shuhui Huang ◽  
Saisai Xie ◽  
Yuanying Fang ◽  
...  

1993 ◽  
Vol 69 (02) ◽  
pp. 157-163 ◽  
Author(s):  
Irving Fox ◽  
Adrian Dawson ◽  
Peter Loynds ◽  
Jane Eisner ◽  
Kathleen Findlen ◽  
...  

SummaryHirulog™ (BG8967) is a direct thrombin inhibitor built by rational design using the protein hirudin as a model (Maraganore et al. [1990]; Biochemistry 29: 7095–101). In order to evaluate the therapeutic potential for hirulog in the management of thrombotic disease, the tolerability and anticoagulant activity of the agent were examined in a study of human volunteers.In a randomized, placebo-controlled study (n = 54), the intravenous infusion of hirulog over 15 min showed a rapid, dose-dependent prolongation of activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). There was a corresponding dose-dependent increase in plasma hirulog levels. The peptide was rapidly cleared with a half-life of 36 min and a total body clearance rate for the peptide of 0.43 1 kg−1 h−1. Similar activity was observed following subcutaneous injection but with sustained pharmacodynamic and pharmacokinetic behavior. There was a significant correlation between pharmacokinetic and pharmacodynamic variables for both intravenous (r = 0.8, p <0.001) and subcutaneous administration (r = 0.7, p = 0.002).To evaluate the possible interactions of aspirin on the tolerability and anticoagulant activity of intravenous hirulog, a cross-over design was employed in eight subjects. Aspirin administration did not modify the peptide’s activity. At the administered dose of 0.6 mg kg−1 h−1 for 2 h, hirulog infusion prolonged APTT from 230 to 260% baseline. The infusion of hirulog in subjects who had received aspirin was not associated with any significant changes in the template bleeding time.The final phase of the study examined the activity and tolerability of hirulog in ten subjects during prolonged intravenous infusions for up to 24 h. The peptide (0.3 mg kg−1 h−1) exhibited sustained anticoagulant activity with no evidence for a cumulative effect. During hirulog infusion, APTT was prolonged from 210 to 250% baseline.In all phases of the study, hirulog administration was generally well-tolerated.Our observations show that hirulog is an active antithrombin agent with excellent tolerability in humans. As a direct thrombin inhibitor, hirulog provides a novel approach for the management of thrombotic disease.


1995 ◽  
Vol 73 (03) ◽  
pp. 535-542 ◽  
Author(s):  
N Crawford ◽  
A Chajara ◽  
G Pfliegler ◽  
B EI Gamal ◽  
L Brewer ◽  
...  

SummaryDrugs can be electro-encapsulated within platelets and targeted to damaged blood vessels by exploiting the platelet’s natural haemostatic properties to adhere to collagen and other vessel wall constituents revealed by injury. A rat aorta balloon angioplasty model has been used to study the effect on platelet deposition of giving iloprost loaded platelets i.v. during the balloon injury. After labelling the circulating platelets with 111-Indium before balloon injury, time course studies showed maximum platelet deposition on the injured aorta occurred at about 1 h post-injury and the deposition remained stable over the next 2-3 h. When iloprost-loaded platelets were given i.v. during injury and the circulating platelet pool labelled with 111-Indium 30 min later, platelet deposition, measured at 2 h postinjury, was substantially and significantly reduced compared with control platelet treatment. Some antiproliferative effects of iloprost-loaded platelets given i.v. during injury have also been observed. Whereas the incorporation of [3H]-thymidine into aorta intima-media DNA at 3 days post injury was 62-fold higher in balloon injured rats than in control sham operated rats, thymidine incorporation into intima/media of rats which had received iloprost loaded platelets during injury was reduced as compared with rats subjected only to the injury procedure. The reduction was only of near significance, however, but at 14 days after injury the total DNA content of the aorta intima/media of rats given iloprost loaded platelets during injury was significantly reduced. Although iloprost loaded platelets can clearly inhibit excessive platelet deposition, other encapsulated agents may have greater anti-proliferative effects. These studies have shown that drug loaded platelets can be targeted to injured arteries, where they may be retained as depots for local release. We believe this novel drug delivery protocol may have therapeutic potential in reducing the incidence of occlusion and restenosis after angioplasty and thrombolysis treatment. Electro-encapsulation of drugs into platelets is a simple procedure and, using autologous and fully biocompatible and biodegradable platelets as delivery vehicles, might overcome some of the immunological and toxicological problems which have been encountered with other delivery vectors such as liposomes, microbeads, synthetic microcapsules and antibodies.


Sign in / Sign up

Export Citation Format

Share Document