scholarly journals Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 630 ◽  
Author(s):  
Son H. Pham ◽  
Yonghyun Choi ◽  
Jonghoon Choi

The new era of nanotechnology has produced advanced nanomaterials applicable to various fields of medicine, including diagnostic bio-imaging, chemotherapy, targeted drug delivery, and biosensors. Various materials are formed into nanoparticles, such as gold nanomaterials, carbon quantum dots, and liposomes. The nanomaterials have been functionalized and widely used because they are biocompatible and easy to design and prepare. This review mainly focuses on nanomaterials responsive to the external stimuli used in drug-delivery systems. To overcome the drawbacks of conventional therapeutics to a tumor, the dual- and multi-responsive behaviors of nanoparticles have been harnessed to improve efficiency from a drug delivery point of view. Issues and future research related to these nanomaterial-based stimuli sensitivities and the scope of stimuli-responsive systems for nanomedicine applications are discussed.

2021 ◽  
Vol 11 (20) ◽  
pp. 9541
Author(s):  
Zhichu Xiang ◽  
Mouquan Liu ◽  
Jun Song

Biocompatible nanosystems based on polymeric materials are promising drug delivery nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications due to their controllable drug release properties. In this review, various polymers and external stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed, and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the therapeutic efficacy.


Author(s):  
Ranhua Xiong ◽  
Ronald X. Xu ◽  
Chaobo Huang ◽  
Stefaan De Smedt ◽  
Kevin Braeckmans

This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel biomedical applications including bio-imaging, drug delivery and ablation of tumor tissues.


2017 ◽  
Vol 8 (1) ◽  
pp. 127-143 ◽  
Author(s):  
Menglian Wei ◽  
Yongfeng Gao ◽  
Xue Li ◽  
Michael J. Serpe

Responsive polymer-based materials are capable of altering their chemical and/or physical properties upon exposure to external stimuli. This review highlights their use for sensing and biosensing, drug delivery, and artificial muscles/actuators.


2018 ◽  
Vol 7 (2) ◽  
pp. 31-45 ◽  
Author(s):  
Alexandre Roumenov Loukanov ◽  
Hristo Stefanov Gagov ◽  
Milena Yankova Mishonova ◽  
Seiichiro Nakabayashi

This article describes how carbon quantum dots (C-dots) are tiny carbon nanoparticles (less than 10 nm in size) being envisaged to be used in bio-sensing, bio-imaging and drug delivery nanosystems. Their low toxicity and stable chemical properties make them suitable candidates for new types of fluorescent probe, which overcome the common drawbacks of previous fluorescent probes (organic dyes and inorganic quantum dots). In addition, fluorescent C-dots possess a rather strong ability to bind with other organic and inorganic molecules due to their abundant surface groups. For that reason, fluorescent C-dots can be manipulated via series of controllable chemical treatments in order to satisfy the demands in the photocatalytic, biochemical and chemical sensing, bio-imaging, drug delivery and enhanced cell targeting. In recent studies it was described the development of carbon quantum dots with large two-photon absorption cross sections towards two-photon imaging for use in photodynamic cancer therapy. Thus, C-dots have become a rising star in biomedical research with a promising future for the application in nanomedicine.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 801
Author(s):  
Zhentao Hao ◽  
Weihua Li

The nepenthes-inspired lubricant-infused surface (LIS) is emerging as a novel repellent surface with self-healing, self-cleaning, pressure stability and ultra-slippery properties. Recently, stimuli-responsive materials to construct a smart LIS have broadened the application of LIS for droplet manipulation, showing great promise in microfluidics. This review mainly focuses on the recent developments towards the droplet manipulation on LIS with different mechanisms induced by various external stimuli, including thermo, light, electric, magnetism, and mechanical force. First, the droplet condition on LIS, determined by the properties of the droplet, the lubricant and substrate, is illustrated. Droplet manipulation via altering the droplet regime realized by different mechanisms, such as varying slipperiness, electrostatic force and wettability, is discussed. Moreover, some applications on droplet manipulation employed in various filed, including microreactors, microfluidics, etc., are also presented. Finally, a summary of this work and possible future research directions for the transport of droplets on smart LIS are outlined to promote the development of this field.


Author(s):  
MALLIKARJUN P. N. ◽  
ANUSHA S. ◽  
SAI NANDINI V. ◽  
RAMA RAO B. ◽  
KAMALA KUMARI P. V. ◽  
...  

Hydrogels are water-swollen 3D networks made of polymers, proteins, small molecules, or colloids. They are porous in structure and entrap/encapsulate large amounts of therapeutic agents and biopharmaceuticals. Their unique properties like biocompatibility, biodegradability, sensitivity to various stimuli, and the ability to be easily conjugated with hydrophilic and hydrophobic drugs with a controlled-release profile make hydrogels a smart drug delivery system. Smart hydrogel systems with various chemically and structurally responsive moieties exhibit responsiveness to external stimuli including temperature, pH, ionic concentration, light, magnetic fields, electrical fields, and chemical and biological stimuli with selected triggers includes polymers with multiple responsive properties have also been developed elegantly combining two or more stimuli-responsive mechanisms. This article emphasized the types, features, and various stimuli systems that produce responsive delivery of drugs.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3343
Author(s):  
Mariana Pinteala ◽  
Marc J. M. Abadie ◽  
Radu D. Rusu

Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13737-13750 ◽  
Author(s):  
Junjie Liu ◽  
Xingming Guo ◽  
Zhong Luo ◽  
Jixi Zhang ◽  
Menghuan Li ◽  
...  

Poor drug delivery to solid tumors remains a great challenge for effective antitumor therapy.


Sign in / Sign up

Export Citation Format

Share Document