scholarly journals The Therapeutic Effect and In Vivo Assessment of Palmitoyl- GDPH on the Wound Healing Process

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 193
Author(s):  
Nur Izzah Md Fadilah ◽  
Mohd Basyaruddin Abdul Rahman ◽  
Loqman Mohamad Yusof ◽  
Noordin Mohamed Mustapha ◽  
Haslina Ahmad

The standard treatment of open wounds via the direct usage of therapeutic agents is not without limitations with respect to healing. Small peptides can create a favorable milieu for accelerating the healing of wounds. This study presents the potential of a novel fatty acid conjugated tetrapeptide (palmitic acid-glycine-aspartic acid-proline-histidine; Palmitoyl-GDPH) in alleviating wound healing. Tetracycline was employed as a standard control drug following its significance in wound healing including biologically active and antimicrobial effects. The peptide in liquid form was applied on to a 4 cm2 full thickness wound surgically induced at the dorsum of Sprague Dawley (SD) rats. The in vivo wound treatment with Palmitoyl-GDPH for eighteen days, histologically demonstrated an almost perfect healing exhibited by increased re-epithelialization, enhanced collagen deposition, and diminished scar formation compared to the controls. In addition, the well-developed epidermal-dermal junction and ultimate stimulation of hair follicle-growth in the Palmitoyl-GDPH treated group indicated the wound to have healed as functionally viable tissues. In general, the much lower hemogram values in the Palmitoyl-GDPH group indicated that the ongoing healing is en route to an earlier recovery. Additionally, the liver, kidney, and pancreas function biomarkers being within normal limits indicated the relatively non-toxic nature of Palmitoyl-GDPH at the used dosage. These results indisputably supported the great potential of this newly synthesized Palmitoyl-GDPH to be used as an effective therapeutic agent for wound healing (this actually means creating a new wound).

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nasim Golkar ◽  
Yousef Ashoori ◽  
Reza Heidari ◽  
Navid Omidifar ◽  
Seyedeh Narjes Abootalebi ◽  
...  

The wound is a break in the integrity of the skin produced by injury, illness, or operation. Wound healing is an essential dynamic biological/physiological process that occurs in response to tissue damage. The huge health, economic, and social effects of wounds on patients and societies necessitate the research to find novel potential therapeutic agents in order to promote wound healing. Postbiotics, the newest member of the biotics family, are valuable functional bioactive substances produced by probiotics through their metabolic activity, which have several beneficial properties, including immunomodulatory, anti-inflammatory, antimicrobial, and angiogenesis characteristics, resulting in acceleration of wound healing. In the current study, three topical cold cream formulations containing postbiotics obtained from Lactobacillus fermentum, Lactobacillus reuteri, or Bacillus subtilis sp. natto probiotic strains were prepared. The effectiveness and wound healing activity of the developed postbiotics cold cream formulations were investigated compared to cold cream without postbiotics and no treatment via wound closure investigation, hydroxyproline content assay, and histological assessment in 25 Sprague Dawley rats divided into five groups. Interestingly, analysis of the results revealed that all three formulations containing postbiotics significantly accelerated the wound healing process. However, in general, the Bacillus subtilis natto cold cream manifested a better wound healing property. The pleasing wound healing characteristics of the topical postbiotics cold creams through the in vivo experiment suggest that formulations containing postbiotics can be considered as a promising nominee for wound healing approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yousef Ashoori ◽  
Milad Mohkam ◽  
Reza Heidari ◽  
Seyedeh Narjes Abootalebi ◽  
Seyyed Mojtaba Mousavi ◽  
...  

Wound healing is a physiological reaction to tissue injuries which plays a crucial role in replacing the destroyed tissues. Probiotics produce valuable compounds that possess antibacterial and anti-inflammatory activities, immunomodulatory effects, and angiogenesis traits leading to the promotion of wound healing. Chitosan nanostructures have versatile properties making them quickly produced into gels, scaffolds, nanoparticles, beads, and sponge structures that can be incorporated into wound healing processes. In the current study, three formulations from nanogel consisting of probiotic supernatant (Lactobacillus reuteri, Lactobacillus fermentum, and Bacillus subtilis sp. natto)-loaded chitosan nanogels were prepared from the culture of corresponding cultures. The chitosan nanogels were previously characterized by Zetasizer, FTIR, and TEM. The prepared formulations’ effectiveness and dressing activity were assessed by evaluating wound closure and histological trials in Sprague-Dawley rats. The results indicated that all probiotic lysate formulations have advantages over the wound healing process. However, Bacillus subtilis natto has a better wound healing quality, which is well known in pathology examination. The favorable effects of probiotic lysate nanogels, including the reasonable wound closing rate, good wound appearance, and satisfactory histological observation via in vivo examination, suggest it as a promising nominee for wound healing purposes.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2021 ◽  
Vol 22 (14) ◽  
pp. 7549
Author(s):  
Wiktor Paskal ◽  
Adriana M. Paskal ◽  
Piotr Pietruski ◽  
Albert Stachura ◽  
Kacper Pełka ◽  
...  

The aim of the study was to evaluate if a pre-incisional N-acetylcysteine (NAC) treatment altered the process of wound healing in a rat model. The dorsal skin of 24 Sprague-Dawley rats was incised in six locations. Before the incisions were made, skin was injected either with lidocaine and epinephrine (one side) or with these agents supplemented with 0.015%, 0.03%, or 0.045% NAC (contralaterally). Photographic documentation of the wound healing process was made at 11 time points. Rats were sacrificed 3, 7, 14, or 60 days after incision to excise scars for histological analysis. They included: Abramov scale scoring, histomorphometry analysis, and collagen fiber arrangement assessment. Skin pretreated with 0.03% NAC produced the shortest scars at all analyzed time points, though this result was statistically insignificant. At this NAC concentration the scars had smaller areas on the third day and were narrower on the day 4 compared with all the other groups (p < 0.05). On day 7, at the same concentration of NAC, the scars had a higher superficial concentration index (p = 0.03) and larger dermal proliferation area (p = 0.04). NAC addition to pre-incisional anesthetic solution decreased wound size and width at an early stage of scar formation at all concentrations; however, with optimal results at 0.03% concentration.


2017 ◽  
Vol 751 ◽  
pp. 581-585 ◽  
Author(s):  
Piyaporn Kampeerapappun ◽  
Pornpen Siridamrong

The objective of this study was to investigate sericin-polyurethane nanofiber cover (SUC) for wound dressing materials in a rat skin. Sericin-polyurethane blended nanofibers were fabricated by using electrospinning. The composition of 3%w/v polyurethane in ethanol and 19% w/v sericin were blended and electrospun at 15 kV, 20 cm from tip to collector with a feed rate of 6.2 ml/hr. The mats, approximately 1.5 mm thick, were sterile by gamma irradiation with a radiation dose of 15 kGy. The samples of in vitro and in vivo testing were separated into three groups; gauze, polyurethane nanofiber cover (UC), and SUC. In vitro cultured L929 cell lines were investigated with inverted microscope. It was found that cells migrated to SCU. For in vivo tests, the remaining wound in rats was measured on day 2-14 after excision. Compared to original size of wound samples, the size of the wound remained 24% for SUC, 33% for gauze, and 34% for UC at day 8. The sericin, an active agent, contained in SUC mats was about 5 µl at 1.5 ×1.5 cm. It can be concluded that sericin is non-toxic to cells and can promote wound healing process in rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laryssa C. Manigat ◽  
Mitchell E. Granade ◽  
Suchet Taori ◽  
Charlotte Anne Miller ◽  
Luke R. Vass ◽  
...  

The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3116
Author(s):  
Thien Do ◽  
Tien Nguyen ◽  
Minh Ho ◽  
Nghi Nguyen ◽  
Thai Do ◽  
...  

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2021 ◽  
Vol 33 (2) ◽  
pp. 145
Author(s):  
Hendry Rusdy ◽  
Astri Suryani Pasaribu Saruksuk ◽  
Rahmi Syaflida Dalimunte ◽  
Gostry Aldica Dohude

Pendahuluan: Pencabutan gigi merupakan prosedur yang sering dilakukan di kedokteran gigi. Setelah pencabutan gigi akan dihasilkan suatu perlukaan. Proses penyembuhan luka dapat dipercepat pada kondisi tertentu. Salah satu bahan alami yang dapat membantu proses penyembuhan luka adalah getah tanaman betadine (Jatropha multifida L.). Penelitian bertujuan untuk menganalisis efektivitas getah tanaman betadine terhadap penyembuhan luka dan terhadap tanda-tanda infeksi pasca pencabutan gigi Metode: Desain penelitian studi eksperimental laboratorium dengan rancangan penelitian post-test only control group design menggunakan 30 ekor tikus Sprague-Dawley. Teknik pengambilan sampel yaitu convenience sampling. Sampel dibagi menjadi 2 kelompok yaitu kelompok perlakuan dan kelompok kontrol. Kelompok perlakuan diberikan getah tanaman betadine dan kelompok kontrol diberikan asam traneksamat secara oral menggunakan sonde lambung. Tunggu selama 4 jam setelah pemberian getah tanaman betadine dan asam traneksamat. Anestesi pada tikus menggunakan ketamin 50 mg/kg berat badan secara intramuskular kemudian dilakukan pencabutan pada gigi tikus. Pengamatan dilakukan dengan melihat kriteria klinis pada hari 1,3,7 dan diperhatikan sampai luka sembuh serta lihat tanda-tanda infeksi. Analisis data dilakukan dengan uji normalitasShapiro Wilik. Hasil penelitian menunjukkan bahwa data berdistribusi tidak normal. Analisis data dilanjutkan menggunakan uji statistik mann whitney. Hasil: Terdapat perbedaan signifikan penyembuhan luka soket pasca pencabutan gigi setelah diberikan getah betadine dan asam traneksamat dengan nilai p=0,037 (p<0,005). Simpulan: Pemberian getah tanaman betadine terbukti lebih efektif terhadap proses penyembuhan luka soket pasca pencabutan gigi dibandingkan dengan pemberian asam traneksamat. Kata kunci: tikus Sprague-Dawley; penyembuhan luka; pencabutan gigi; getah batang betadine ABSTRACTIntroduction: Tooth extraction is a procedure often performed in dentistry. Tooth extraction will always cause injuries. However, the wound healing process can be accelerated under certain conditions. One of the natural ingredients that can accelerate the wound healing process is betadine (Jatropha multifida L.) plant sap. The study was aimed to analyzed the effect of betadine plant sap on wound healing and signs of infection after tooth extraction. Methods: Experimental laboratory study design with post-test only control group design was conducted towards 30 Sprague-Dawley rats. The sampling technique was convenience sampling. The sample was divided into two groups, the treatment group and the control group. The treatment group was administered with betadine plant sap, and the control group was administered with tranexamic acid orally using a gastric probe, then waited 4 hours after. The anaesthesia was then performed using 50 mg/kg body weight of ketamine intramuscularly. The extraction was performed after. Observations was conducted at the clinical criteria on days 1, 3, and 7 and continue to be monitored until the wound heals. Then, the signs of infection were observed. Data analysis was carried out using the Shapiro Wilk normality test. The results showed that the data was not normally distributed. Thus, data analysis was continued using the Mann Whitney statistical test. Results: The results showed a significant difference in the healing of socket wounds after tooth extraction after being administered with betadine sap and tranexamic acid with a value of p=0.037 (p<0.005). Conclusions: Administration of betadine plant sap is proven to be more effective in accelerating the healing process of socket wounds after tooth extraction than tranexamic acid. Keywords: Sprague-Dawley rats; wound healing; pencabutan gigi; getah batang betadine 


2020 ◽  
Vol 8 (39) ◽  
pp. 9035-9042
Author(s):  
Ming-Yu Wu ◽  
Li Liu ◽  
Qian Zou ◽  
Jong-Kai Leung ◽  
Jia-Li Wang ◽  
...  

An isoquinolinium-based photosensitizer was developed for mitochondrial and bacterial imaging, and used in photodynamic anticancer and antibacterial therapy in a wound healing process in vivo.


Sign in / Sign up

Export Citation Format

Share Document