scholarly journals Nanoencapsulated Doxorubicin Prevents Mucositis Development in Mice

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1021
Author(s):  
Cristiane M. Pinto ◽  
Laila S. Horta ◽  
Amanda P. Soares ◽  
Bárbara A. Carvalho ◽  
Enio Ferreira ◽  
...  

Doxorubicin (DOX), a chemotherapy drug successfully used in the therapy of various types of cancer, is currently associated with the mucositis development, an inflammation that can cause ulcerative lesions in the mucosa of the gastrointestinal tract, abdominal pain and secondary infections. To increase the safety of the chemotherapy, we loaded DOX into nanostructured lipid carriers (NLCs). The NLC–DOX was characterized by HPLC, DLS, NTA, Zeta potential, FTIR, DSC, TEM and cryogenic-TEM. The ability of NLC–DOX to control the DOX release was evaluated through in vitro release studies. Moreover, the effect of NLC–DOX on intestinal mucosa was compared to a free DOX solution in C57BL/6 mice. The NLC–DOX showed spherical shape, high drug encapsulation efficiency (84.8 ± 4.6%), high drug loading (55.2 ± 3.4 mg/g) and low average diameter (66.0–78.8 nm). The DSC and FTIR analyses showed high interaction between the NLC components, resulting in controlled drug release. Treatment with NLC–DOX attenuated DOX-induced mucositis in mice, improving shortening on villus height and crypt depth, decreased inflammatory parameters, preserved intestinal permeability and increased expression of tight junctions (ZO-1 and Ocludin). These results indicated that encapsulation of DOX in NLCs is viable and reduces the drug toxicity to mucosal structures.

2011 ◽  
Vol 183-185 ◽  
pp. 1677-1681 ◽  
Author(s):  
Zhe Zhang ◽  
De Fu Chi ◽  
Jia Yu

Buprofezin (BPF) microcrystals were directly encapsulated with nature polysaccharides chitosan (CHI) and sodium alginate (ALG) through layer-by-layer (LbL) self-assembly. The coated colloids were characterized using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The surface of the coated microcrystal was smoothened and the coating was uniform. Different concentrations of the ALG, CHI, BPF and CaCl2 were selected as the influencing factors, and then, the microcapsules were optimized by orthogonal experiment. The size distribution of microcapsules was determined by Laser Diffraction Size Analyzer. It showed statistically normal distribution. The average diameter of BPF was 1.5m. The encapsulation efficiency of the BPF loaded microparticles was about 67.2±0.73%. The drug loading content was about 66.7±0.31% after encapsulated. The in vitro release experiments revealed that the polyelectrolytes prolonged the release time of the encapsulated BPF microcrystals.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Leng ◽  
Hongliang Huang ◽  
Wenping Wang ◽  
Na Sai ◽  
Longtai You ◽  
...  

Drug delivery carriers with a high drug loading capacity and biocompatibility, especially for controlled drug release, are urgently needed due to the side effects and frequent dose in the traditional therapeutic method. Guided by nanomaterials, we have successfully synthesized zirconium-based metal−organic frameworks, Zr-TCPP (TCPP: tetrakis (4-carboxyphenyl) porphyrin), namely, PCN-222, which is synthesized by solvothermal method. And it has been designed as a drug delivery system (DDS) with a high drug loading of 38.77 wt%. In our work, PCN-222 has achieved pH-sensitive drug release and showed comprehensive SEM, TEM, PXRD, DSC, FTIR, and N2 adsorption-desorption. The low cytotoxicity and good biocompatibility of PCN-222 were certificated by the in vitro results from an MTT assay, DAPI staining, and Annexin V/PI double-staining even cultivated L02 cells and HepG2 cells for 48h. Furthermore, Oridonin, a commonly used cancer chemotherapy drug, is adsorbed into PCN-222 via the solvent diffusion technique. Based on an analysis of the Oridonin release profile, results suggest that it can last for more than 7 days in vitro. And cumulative release rate of Ori at the 7 d was about 86.29% and 63.23% in PBS (pH 5.5 and pH 7.2, respectively) at 37°C. HepG2 cells were chosen to research the cytotoxicity of PCN-222@Ori and free Oridonin. The results demonstrated that the PCN-222@Ori nanocarrier shows higher cytotoxicity in HepG2 cells compared to Oridonin.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2535 ◽  
Author(s):  
Yaqiong Zhang ◽  
Bo Wang ◽  
Yan Wu ◽  
Boyan Gao ◽  
Liangli (Lucy) Yu

Zein composite particles coated with caseinate-pectin electrostatic complexes (zein-caseinate-pectin particles) were fabricated using an electrostatic deposition and liquid-liquid dispersion method without heating treatment. Compared to zein particles coated only with caseinate, the acidic stability of zein-caseinate-pectin particles was greatly improved, and the particle aggregation was suppressed at pH 3–6, especially at pH values near the isoelectric point of caseinate (pH 4–5). Besides, desirable long-term storage stability and re-dispersibility were observed. Under different zein to curcumin (Cur) feeding ratios (10:1, 20:1, 30:1 and 40:1, w/w), the Cur-loaded zein-caseinate-pectin particles had a spherical shape with an average diameter ranging from 358.37 to 369.20 nm, a narrow size distribution (polydispersity index < 0.2) and a negative surface charge ranging from −18.87 to −19.53 mV. The relatively high encapsulation efficiencies of Cur (81.27% to 94.00%) and desirable re-dispersibility were also achieved. Fluorescence spectroscopy indicated that the encapsulated Cur interacted with carrier materials mainly through hydrophobic interactions. The in-vitro release profile showed a sustained release of Cur from zein-caseinate-pectin particles in acidic aqueous environment (pH 4) up to 24 h, without any burst effect. In addition, the encapsulation retained more ABTS•+ radical scavenging capacity of Cur during 4 weeks of storage. These results suggest that zein-caseinate-pectin particles may be used as a potential delivery system for lipophilic nutrients in acidic beverages.


2019 ◽  
Vol 7 (7) ◽  
pp. 1050-1055 ◽  
Author(s):  
Liangcan He ◽  
Kanglei Pang ◽  
Wenwen Liu ◽  
Yue Tian ◽  
Lin Chang ◽  
...  

Core–shell Au@zeolitic-imidazolate-framework nanocarriers with high drug-loading, controlled drug release properties, and high cancer treatment efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Fouad Damiri ◽  
Yahya Bachra ◽  
Chaimaa Bounacir ◽  
Asmae Laaraibi ◽  
Mohammed Berrada

In this study, chitosan-based hydrogels were produced by incorporating three drugs with a different solubility into a polymer matrix. The lyophilized chitosan salt was prepared using an innovative and less-expensive synthetic process by the freeze-drying technique. Firstly, the three drugs (caffeine, ascorbic acid, and 5-fluorouracil (5-FU)) were selected as model drugs to test the in vitro release behavior of the hydrogel. The drugs were solubilized in chitosan salt, lyophilized, and cross-linked with benzaldehyde involving the formation of a Schiff base with (–C=N-) linkage to produce a physical hydrogel. Subsequently, the physicochemical properties of N-benzyl chitosan and lyophilized chitosan salt were evaluated by Fourier-transform infrared (FTIR) spectra, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The intrinsic viscosity of the conventional chitosan was determined by the Mark–Houwink–Sakurada equation. Moreover, the kinetics of hydrogel swelling and drug release were studied by the UV-visible method at physiological conditions (pH = 7.4 at 37°C). The results show that lyophilized N-benzyl chitosan had a maximum swelling ratio of 720 ± 2% by immersion in phosphate-buffered saline solutions (PBS) (pH = 7.4 at 37°C). In vitro drug releases were evaluated in PBS, and the obtained results show that the maximum drug release after 24 h was 42% for caffeine, 99% for 5-FU, and 94% for ascorbic acid. Then, to optimize the cumulative release of caffeine, Tween 20 was added and 98% as a release percentage was obtained. The drug-loading results were investigated with the Korsmeyer–Peppas kinetic model and applied to determine the drug release mechanism.


2017 ◽  
Vol 33 (4) ◽  
pp. 382-396 ◽  
Author(s):  
Wen Zhang ◽  
Yan Gao ◽  
Ning Yang ◽  
Hua Zhang ◽  
Feng Zhang ◽  
...  

Sinomenine is a natural alkaloid with important biological activities (e.g. anti-cancer, anti-inflammatory, and anti-allergic). However, the unstability and short half-life absolutely limited its application to foods. Microencapsulation technology can offer a way to solve these issues. In this study, polylactic acid microcapsules loading sinomenine hydrochloride were fabricated by phase inversion emulsification-drying in liquid technique. The results showed that microcapsules had nice spherical shape, uniform particle size, and free flowing. The encapsulation efficiency was 89.2% and drug loading was 8.9% under the optimal conditions. In vitro release assays demonstrated that release of sinomenine from microcapsules was sustained and slow. Moreover, it was found that the sinomenine release fitted Fickian diffusion mechanism. The results of cytotoxicity study showed that sinomenine-loaded microcapsules were biocompatible. Sinomenine-loaded microcapsules could inhibit the growth of MDA-MB-231 cells using methyl thiazolyl tetrazolium assay. In summary, polylactide microcapsules exhibit excellent properties for sinomenine that can be used in drug or food industry.


2012 ◽  
Vol 602-604 ◽  
pp. 231-234
Author(s):  
Min Peng Zhu ◽  
Su Hong Li

Epichlorohydrin crosslinked starch microspheres (ECMs) were synthesized with soluble starch as a raw material and epichlorohydrin as a crosslinker. The characteristics of ECMs were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform InfraRed spectroscopy (FT-IR).The drug loading and in vitro release properties of ECMs were studied using arginine as a model drug. The results indicate that ECMs have a spherical morphology with average diameter about 7μm. The drug loading studies show that after absorption for 1.5 h, the largest amount of drug (drug loading 31mg/g) is loaded when the quantity ratio of ECMs to arginine is 2. In-vitro release studies indicate that the ECMs are effective in controlled releasing arginine over an extended period of about 25 h.


2012 ◽  
Vol 90 (7) ◽  
pp. 600-607 ◽  
Author(s):  
Li Xu ◽  
Lidong Shao ◽  
Minqi Hu ◽  
Lin Chen ◽  
Yunmei Bi

A new third-generation thermoresponsive amphiphilic dendron consisting of a hydrophobic poly(benzyl ether) dendritic core and hydrophilic oligo(ethylene glycol) peripheries was synthesized by an efficient convergent approach. Its structure was confirmed by 1H NMR, 13C NMR, IR, GPC, MALDI-TOF MS, and elemental analysis. Turbidity and dynamic light scattering (DLS) measurements demonstrated that the dendron showed a reversible temperature-dependent phase-transition behavior in aqueous solution and its lower critical solution temperature (LCST) was lower than that of the corresponding second-generation dendron, indicating the dependence of LCSTs on the generation of dendrons. Fluorescent spectroscopy and TEM studies revealed that the dendron would self-assemble into nanospherical micelles with a very low critical micelle concentration (CMC) in water. The core-shell structure of the micelles was proved by 1H NMR analyses of the micelles in D2O. The drug-loading capacity of the dendron micelles is about 29 wt % for podophyllotoxin (POD) used as a model drug, and in vitro release tests showed a desired thermoresponsive drug-release behavior. These results indicate that the dendron is promising as stimuli-responsive material for biomedical applications.


2020 ◽  
Vol 58 (4) ◽  
pp. 450
Author(s):  
Dai Hai Nguyen ◽  
Thai Thanh Hoang Thi

Porous nano-silica (PNS) as promising targeted drug nanocarriers has become a new area of interest in recent years due to their tunable pore sizes and large pore volumes, high chemical and thermal stability, and excellent biocompatibility. These unique structures of PNS facilitate effective protecting drugs from degradation and denaturation. However, it has certain limitations for being used in pharmaceutical such as a burst release of encapsulated drugs. In this study, the effects of grafting cyclodextrin (CD) as gatekeeper through the biodegradable disulfide bonds on doxorubicin (DOX) release was investigated. The morphology and pore channel structures of these modified PNS were assessed by transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) was utilized to evaluate the functional groups on PNS surface. In vitro tests were conducted for the drug loading and releasing efficiency. The results demonstrated that the prepared DOX@PNS-SS-A/CD was spherical shape with an average diameter of 45 nm, drug loading efficiency of 60.52 ± 2.12%, and sustained release. More importantly, MTT assay showed that PNS-SS-A/CD was biocompatible nanocarriers. In addition, the modified PNS incorporating DOX could significantly eliminate the toxicity of free DOX. As a result, the development of PNS-SS-A/CD may offer a promising candidate for loading and sustained release of DOX in cancer therapy.


Author(s):  
Jain Pushpendra ◽  
Mishra Amit ◽  
Yadav K. ◽  
Patil K. ◽  
Baghel S.

The aim of this study was to prepare nimesulide solid lipid nanoparticles (NIM-SLNs), to formulate the controlled drug release and to evaluate its physiochemical characteristics. NIM-SLNs were prepared by an emulsification and low-temperature solidification method. Additionally, attempts have been made to study the effect of individual process parameters (stirring speed and stirring time) and formulation parameters (Lecithin concentration, drug concentration and surfactant concentration) on entrapment efficiency. An approximately entrapment efficiency of (60%) and an average drug loading of (1.0 %) were achieved from optimized formulation of NIM-SLNs. The results show that the TMZ-SLNs had an average diameter of 187±1.23nm and in vitro drug release was conducted in phosphate-buffered saline (pH 7.4) at 37oC. The cumulative percentages drug release of nimesulide was found approximately 60% in 24 hours and release behavior was in accordance with Higuchi-equation. The results indicate that the SLNs is a promising controlled-release system. It may also allow a reduction in dosage and a decrease in systemic toxicity.


Sign in / Sign up

Export Citation Format

Share Document