scholarly journals Inhibition of Indigoidine Synthesis as a High-Throughput Colourimetric Screen for Antibiotics Targeting the Essential Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1066
Author(s):  
Alistair S. Brown ◽  
Jeremy G. Owen ◽  
James Jung ◽  
Edward N. Baker ◽  
David F. Ackerley

A recently-validated and underexplored drug target in Mycobacterium tuberculosis is PptT, an essential phosphopantetheinyl transferase (PPTase) that plays a critical role in activating enzymes for both primary and secondary metabolism. PptT possesses a deep binding pocket that does not readily accept labelled coenzyme A analogues that have previously been used to screen for PPTase inhibitors. Here we report on the development of a high throughput, colourimetric screen that monitors the PptT-mediated activation of the non-ribosomal peptide synthetase BpsA to a blue pigment (indigoidine) synthesising form in vitro. This screen uses unadulterated coenzyme A, avoiding analogues that may interfere with inhibitor binding, and requires only a single-endpoint measurement. We benchmark the screen using the well-characterised Library of Pharmaceutically Active Compounds (LOPAC1280) collection and show that it is both sensitive and able to distinguish weak from strong inhibitors. We further show that the BpsA assay can be applied to quantify the level of inhibition and generate consistent EC50 data. We anticipate these tools will facilitate both the screening of established chemical collections to identify new anti-mycobacterial drug leads and to guide the exploration of structure-activity landscapes to improve existing PPTase inhibitors.

Author(s):  
Alistair S Brown ◽  
Jeremy G Owen ◽  
James Jung ◽  
Edward N Baker ◽  
David F Ackerley

A recently-validated and underexplored drug target in Mycobacterium tuberculosis is PptT, an essential phosphopantetheinyl transferase (PPTase) that plays a critical role in activating enzymes for both primary and secondary metabolism. PptT possesses a deep binding pocket that does not readily accept labelled coenzyme A analogues that have previously been used to screen for PPTase inhibitors. Here we report on the development of a high throughput, colorimetric screen that monitors the PptT-mediated activation of the non-ribosomal peptide synthetase BpsA to a blue pigment (indigoidine) synthesising form in vitro. This screen uses unadulterated coenzyme A, avoiding analogues that may interfere with inhibitor binding, and requires only a single-endpoint measurement. We benchmark the screen using the well-characterised Library of Pharmaceutically Active Compounds (LOPAC1280) collection, and show that it is both sensitive and able to distinguish weak from strong inhibitors. We further show that the BpsA assay can be applied to quantify the level of inhibition and generate consistent EC50 data.


2019 ◽  
Vol 24 (9) ◽  
pp. 915-927
Author(s):  
P. Heine ◽  
G. Witt ◽  
A. Gilardi ◽  
P. Gribbon ◽  
L. Kummer ◽  
...  

The development of cell-free high-throughput (HT) methods to screen and select novel lead compounds remains one of the key challenges in G protein-coupled receptor (GPCR) drug discovery. Mutational approaches have allowed the stabilization of GPCRs in a purified and ligand-free state. The increased intramolecular stability overcomes two major drawbacks for usage in in vitro screening, the low receptor density on cells and the low stability in micelles. Here, an HT fluorescence polarization (FP) assay for the neurotensin receptor type 1 (NTS1) was developed. The assay operates in a 384-well format and is tolerant to DMSO. From a library screen of 1272 compounds, 12 (~1%) were identified as primary hits. These compounds were validated in orthogonal assay formats using surface plasmon resonance (SPR), which confirmed binding of seven compounds (0.6%). One of these compounds showed a clear preference for the orthosteric binding pocket with submicromolar affinity. A second compound revealed binding at a nonorthosteric binding region and showed specific biological activity on NTS1-expressing cells. A search of analogs led to further enhancement of affinity, but at the expense of activity. The identification of GPCR ligands in a cell-free assay should allow the expansion of GPCR pharmaceuticals with antagonistic or agonistic activity.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. eaau8959 ◽  
Author(s):  
Elaine Ballinger ◽  
John Mosior ◽  
Travis Hartman ◽  
Kristin Burns-Huang ◽  
Ben Gold ◽  
...  

Mycobacterium tuberculosis (Mtb) is the leading infectious cause of death in humans. Synthesis of lipids critical for Mtb’s cell wall and virulence depends on phosphopantetheinyl transferase (PptT), an enzyme that transfers 4′-phosphopantetheine (Ppt) from coenzyme A (CoA) to diverse acyl carrier proteins. We identified a compound that kills Mtb by binding and partially inhibiting PptT. Killing of Mtb by the compound is potentiated by another enzyme encoded in the same operon, Ppt hydrolase (PptH), that undoes the PptT reaction. Thus, loss-of-function mutants of PptH displayed antimicrobial resistance. Our PptT-inhibitor cocrystal structure may aid further development of antimycobacterial agents against this long-sought target. The opposing reactions of PptT and PptH uncover a regulatory pathway in CoA physiology.


2021 ◽  
Author(s):  
◽  
Alistair Brown

<p>Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that synthesise bioactive peptides using an assembly line architecture, wherein each module is responsible for the incorporation of a monomer into the growing chain. Present in both fungi and bacteria, NRPSs are responsible for a wide variety of secondary metabolites and bioactive compounds including siderophores, antibiotics, anti-cancer compounds and immunosuppressants. For functionality, NRPSs require the attachment of a phosphopantetheine moiety to their peptidyl carrier protein domains. This reaction is catalysed by a phosphopantetheinyl transferase (PPTase).  The NRPS blue pigment synthetase A (BpsA) is unusual in that it is comprised of only a single module. BpsA contains an adenylation domain that recognises and sequentially binds two molecules of L-glutamine, an oxidation domain that is believed to oxidise each glutamine monomer, a peptidyl carrier protein domain that binds the phosphopantetheine moiety, and a thioesterase domain that cyclises each glutamine and releases the final bicyclic product from the enzyme. This final product is a blue pigment called indigoidine, and its synthesis from two molecules of L-glutamine is powered by ATP. Comparatively to other NRPSs BpsA is easy to manipulate and work with both in vitro and in vivo. Here, the ability to easily detect synthesis of indigoidine was utilised to provide a versatile reporter to detect a variety of biochemical activities.  PPTases are essential enzymes that are promising drug targets in the clinically important bacteria Pseudomonas aeruginosa and Mycobacterium tuberculosis. BpsA can be purified in the inactive apo form, which then requires a PPTase to activate it to enable indigoidine synthesis. Here it was shown that mixing BpsA, a PPTase, the enzymatic substrates, and a potential inhibitor enables screening for PPTase inhibition by monitoring the rate or extent of indigoidine synthesis. This method was optimised and used to screen commercial drug libraries against two PPTases, PcpS from P. aeruginosa and PptT from M. tuberculosis. Several novel inhibitors were identified and pilot in vivo studies were performed. M. tuberculosis also possesses a second essential PPTase called TB-AcpS, which has very narrow substrate specificity and cannot post-translationally modify BpsA. In an attempt to widen the substrate specificity a combination of rational engineering and directed evolution was employed. These attempts did not yield significant improvements in the ability of TB-AcpS to activate modified BpsA, however they did yield mutants that were more effective substrates for other type I PPTases.  The easily detectable nature of indigoidine also enabled application of BpsA as a reporter for a range of different substrates. Particularly effective was development of a commercially applicable method using BpsA to quantify L-glutamine in a range of conditions, including cell culture media and blood. The assay developed offers several advantages over currently available kits. BpsA was also used to detect and quantify ATP, and this was applied to monitor adenylation reactions. Finally, the ability of BpsA to synthesise indigoidine-like compounds from glutamine analogues was explored.</p>


2020 ◽  
Vol 218 (2) ◽  
Author(s):  
Li Zhang ◽  
Xiuju Jiang ◽  
Daniel Pfau ◽  
Yan Ling ◽  
Carl F. Nathan

Macrophages help defend the host against Mycobacterium tuberculosis (Mtb), the major cause of tuberculosis (TB). Once phagocytized, Mtb resists killing by macrophages, replicates inside them, and leads to their death, releasing Mtb that can infect other cells. We found that the death of Mtb-infected mouse macrophages in vitro does not appear to proceed by a currently known pathway. Through genome-wide CRISPR-Cas9 screening, we identified a critical role for autocrine or paracrine signaling by macrophage-derived type I IFNs in the death of Mtb-infected macrophages in vitro, and blockade of type I IFN signaling augmented the effect of rifampin, a first-line TB drug, in Mtb-infected mice. Further definition of the pathway of type I IFN–mediated macrophage death may allow for host-directed therapy of TB that is more selective than systemic blockade of type I IFN signaling.


2021 ◽  
Vol 15 (7) ◽  
pp. e0009605
Author(s):  
Lorenzzo Lyrio Stringari ◽  
Luciana Polaco Covre ◽  
Flávia Dias Coelho da Silva ◽  
Vivian Leite de Oliveira ◽  
Maria Carolina Campana ◽  
...  

Background Regulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb. Methods We evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv). Results The frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups. Conclusions Tregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence.


2021 ◽  
Vol 19 (2) ◽  
pp. 171-178
Author(s):  
Suriyati Mohamad ◽  
◽  
Nur Najihah Ismail ◽  
Hasnah Osman ◽  
Habibah A Wahab ◽  
...  

Global tuberculosis (TB) burden underscores the importance of developing new effective anti-TB drugs. This study was concerned with prospecting for potential anti-TB agents from Malaysian medicinal plants. In our previous study, we have reported that n-hexane fractions of Costus speciosus (C. speciosus) (J. Koening) Sm., Cymbopogon citratus (C. citratus ) (DC.) Stapf. and Tabernaemontana coronaria (T. coronaria) (Jacq.) posses promising anti-TB activity against Mycobacterium tuberculosis (M. tuberculosis) H37Rv with minimum inhibitory concentrations (MICs) of 200–100 µg/mL. This study aimed to investigate the interactions of these active fractions with first-line anti-TB drugs (isoniazid, rifampicin, ethambutol and streptomycin) against M. tuberculosis H37Rv using the microdilution checkerboard method. C. citratus (stem-rhizome) n-hexane fraction exhibited synergism with all drugs except ethambutol which showed additive interaction. Synergistic was also observed when C. speciosus (stem-flower) n-hexane and T. coronaria (leaf) n-hexane fractions in combination with rifampicin. C. speciosus (stem-flower) n-hexane and T. coronaria (leaf) n-hexane exhibited additive interaction with isoniazid, ethambutol and streptomycin. Hence, these active plants are worthy of further investigations for the discovery of anti-TB drug leads.


2015 ◽  
Author(s):  
See Hong Chiu ◽  
Lei Xie

One of the unaddressed challenges in drug discovery is that drug potency determined in vitro is not a reliable indicator of drug efficacy and toxicity in humans. Accumulated evidences suggest that the in vivo activity is more strongly correlated with the binding/unbinding kinetics than the equilibrium thermodynamics of protein-ligand interactions (PLI) in many cases. However, existing experimental and computational techniques are both insufficient in studying the molecular details of kinetics process of PLI. Consequently, we not only have limited mechanistic understanding of the kinetic process but also lack a practical platform for the high-throughput screening and optimization of drug leads based on their kinetic properties. Here we address this unmet need by integrating energetic and conformational dynamic features derived from molecular modeling with multi-task learning. To test our method, HIV-1 protease drug complexes are used as a model system. Our integrated model provides us with new insights into the molecular determinants of the kinetics of PLI. We find that the coherent coupling of conformational dynamics between protein and ligand may play a critical role in determining the kinetic rate constants of PLI. Furthermore, we demonstrated that Normal Mode Analysis (NMA) is an efficient method to capture conformational dynamics of the binding/unbinding kinetics. Coupled with the multi-task learning, we can predict combined kon and koff accurately with an accuracy of 74.35%. Thus, it is possible to screen and optimize compounds based on their kinetic property. Further development of such computational tools will bridge one of the critical missing links between in vitro drug screening and in vivo drug efficacy and toxicity.


2018 ◽  
Author(s):  
Juliane Ollinger ◽  
Anuradha Kumar ◽  
David M. Roberts ◽  
Mai A. Bailey ◽  
Allen Casey ◽  
...  

AbstractTuberculosis is a disease of global importance for which novel drugs are urgently required. We developed a whole-cell phenotypic screen which can be used to identify inhibitors of Mycobacterium tuberculosis growth. We used recombinant strains of virulent M. tuberculosis which express far-red fluorescent reporters and used fluorescence to monitor growth in vitro. We optimized our high throughput assays using both 96-well and 384-well plates; both formats gave assays which met stringent reproducibility and robustness tests. We screened a compound set of 1105 chemically diverse compounds previously shown to be active against M. tuberculosis and identified primary hits which showed ≥ 90% growth inhibition. We ranked hits and identified three chemical classes of interest – the phenoxyalkylbenzamidazoles, the benzothiophene 1–1 dioxides, and the piperidinamines. These new compound classes may serve as starting points for the development of new series of inhibitors that prevent the growth of M. tuberculosis. This assay can be used for further screening, or could easily be adapted to other strains of M. tuberculosis.


2020 ◽  
Vol 26 (1) ◽  
pp. 113-121
Author(s):  
Yuka Otsuka ◽  
Michael V. Airola ◽  
Yong-Mi Choi ◽  
Nicolas Coant ◽  
Justin Snider ◽  
...  

There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).


Sign in / Sign up

Export Citation Format

Share Document