scholarly journals Comparative Study of the Pharmacological Properties and Biological Effects of Polygonum aviculare L. herba Extract-Entrapped Liposomes versus Quercetin-Entrapped Liposomes on Doxorubicin-Induced Toxicity on HUVECs

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1418
Author(s):  
Mariana Mureşan ◽  
Diana Olteanu ◽  
Gabriela Adriana Filip ◽  
Simona Clichici ◽  
Ioana Baldea ◽  
...  

This study aimed to evaluate the comparative biological effects of Polygonum aviculare L. herba (PAH) extract and quercetin-entrapped liposomes on doxorubicin (Doxo)-induced toxicity in HUVECs. HUVECs were treated with two formulations of liposomes loaded with PAH extract (L5 and L6) and two formulations of liposomes loaded with quercetin (L3 prepared with phosphatidylcholine and L4 prepared with phosphatidylserine). The results obtained with atomic force microscopy, zeta potential and entrapment liposome efficiency confirmed the interactions of the liposomes with PAH or free quercetin and a controlled release of flavonoids entrapped in all the liposomes. Doxo decreased the cell viability and induced oxidative stress, inflammation, DNA lesions and apoptosis in parallel with the activation of Nrf2 and NF-kB. Free quercetin, L3 and L4 inhibited the oxidative stress and inflammation and reduced apoptosis, particularly L3. Additionally, these compounds diminished the Nrf2 and NF-kB expressions and DNA lesions, principally L4. PAH extract, L5 and L6 exerted antioxidant and anti-inflammatory activities, reduced γH2AX formation and inhibited extrinsic apoptosis and transcription factors activation but to a lesser extent. The loading of quercetin in liposomes increased the cell viability and exerted better endothelial protection compared to free quercetin, especially L3. The liposomes with PAH extract had moderate efficiency, mainly due to the antioxidant and anti-inflammatory effects and the inhibition of extrinsic apoptosis.

2017 ◽  
Vol 23 (5) ◽  
pp. 1002-1012 ◽  
Author(s):  
Zhanhui Su ◽  
Han Sun ◽  
Man Ao ◽  
Chunying Zhao

AbstractHigh-resolution atomic force microscopy (AFM) was used for the in situ evaluation of the anti-inflammatory effects of triptolide on rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) to understand the anti-RA effects of triptolide, based on the morphological and biophysical changes observed in RA-FLS. RA-FLS have been reported to play a primary role in inflammatory bone destruction during the development of RA and thus are regarded as an important target for RA treatment. Triptolide pretreatment significantly inhibited tumor necrosis factor-α-induced expression of the interleukin (IL)-1β, IL-6, and IL-8 genes in MH7A cells. Using AFM, we showed that triptolide-induced morphological damage in MH7A cells by inducing significant ultrastructure changes in the membrane, which were closely related to triptolide-induced apoptosis in MH7A cells. Using force measurements determined with AFM, triptolide was shown to increase the stiffness of MH7A cells. These findings not only revealed the strong anti-inflammatory effects of triptolide on RA-FLS, highlighting triptolide as a potential anti-RA agent, but also revealed the possible use of AFM for studying anti-inflammatory responses in RA-FLS, which we expect to be developed into a potential tool for anti-RA drug studies in RA-FLS.


2019 ◽  
Vol 48 (3) ◽  
pp. e18-e18 ◽  
Author(s):  
Xu Xu ◽  
Toshiaki Nakano ◽  
Masataka Tsuda ◽  
Ryota Kanamoto ◽  
Ryoichi Hirayama ◽  
...  

Abstract Ionizing radiation produces clustered DNA damage that contains two or more lesions in 10–20 bp. It is believed that the complexity of clustered damage (i.e., the number of lesions per damage site) is related to the biological severity of ionizing radiation. However, only simple clustered damage containing two vicinal lesions has been demonstrated experimentally. Here we developed a novel method to analyze the complexity of clustered DNA damage. Plasmid DNA was irradiated with densely and sparsely ionizing Fe-ion beams and X-rays, respectively. Then, the resulting DNA lesions were labeled with biotin/streptavidin and observed with atomic force microscopy. Fe-ion beams produced complex clustered damage containing 2–4 lesions. Furthermore, they generated two or three clustered damage sites in a single plasmid molecule that resulted from the hit of a single track of Fe-ion beams. Conversely, X-rays produced relatively simple clustered damage. The present results provide the first experimental evidence for complex cluster damage.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2601 ◽  
Author(s):  
Violeta Rodriguez-Ruiz ◽  
José Salatti-Dorado ◽  
Abolfazl Barzegari ◽  
Alba Nicolas-Boluda ◽  
Amel Houaoui ◽  
...  

Astaxanthin is a xanthophyll carotenoid showing efficient scavenging ability and represents an interesting candidate in the development of new therapies for preventing and treating oxidative stress-related pathologies. However, its high lipophilicity and thermolability often limits its antioxidant efficacy in human applications. Here, we developed a formulation of lipid carriers to protect astaxanthin’s antioxidant activity. The synthesis of natural astaxanthin-loaded nanostructured lipid carriers using a green process with sunflower oil as liquid lipid is presented. Their antioxidant activity was measured by α-Tocopherol Equivalent Antioxidant Capacity assay and was compared to those of both natural astaxanthin and α-tocopherol. Characterizations by dynamic light scattering, atomic force microscopy, and scattering electron microscopy techniques were carried out and showed spherical and surface negative charged particles with z-average and polydispersity values of ~60 nm and ~0.3, respectively. Astaxanthin loading was also investigated showing an astaxanthin recovery of more than 90% after synthesis of nanostructured lipid carriers. These results demonstrate the capability of the formulation to stabilize astaxanthin molecule and preserve and enhance the antioxidant activity.


2015 ◽  
Vol 408 (1) ◽  
pp. 165-176 ◽  
Author(s):  
Jiang Pi ◽  
Huaihong Cai ◽  
Fen Yang ◽  
Hua Jin ◽  
Jianxin Liu ◽  
...  

Author(s):  
Mamdooh Ghoneum ◽  
Mohamed S. A. El-Gerbed

Abstract Purpose Methotrexate (MTX) induces hepatotoxicity, limiting its clinical efficacy as a widely known chemotherapy drug. In the current study, we examined the protective effect of human placenta extract (HPE) against MTX-induced liver damage in rats, as well as its ability to regulate antioxidative and anti-inflammatory liver responses. Methods Male rats were orally administered MTX at a daily dose of 5 mg/kg-body-weight in the presence or absence of HPE (10.08 mg/kg) for 2 weeks. We measured the biological effects of MTX and HPE on the levels of liver enzymes, lipid profile, lipid peroxidation, oxidative stress biomarkers, and cytokines [tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10)]. In addition, histological examination and histopathological scoring of liver tissues were performed. Results MTX-treated rats showed significantly increased (p < 0.001) liver enzyme levels for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, total cholesterol, and triglyceride levels. However, HPE supplementation in MTX-treated rats significantly decreased (p < 0.001) these elevated levels. HPE supplementation also significantly reduced the oxidative stress biomarker malondialdehyde (MDA), reversed the reduction in glutathione (GSH), and markedly increased the antioxidant enzyme activities of catalase (CAT) and superoxide dismutase (SOD) in the livers of MTX-treated rats. Furthermore, HPE supplementation significantly decreased the MTX-elevated levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-10. Histopathological examinations showed that MTX produced severe cellular damage and inflammatory lesions in liver tissues, while treatment with HPE improved hepatic histologic architecture. Conclusion HPE has the ability to ameliorate methotrexate-induced liver injury in rats by mechanisms that include boosting antioxidative responses and down-regulating MDA and pro-inflammatory cytokine production.


2013 ◽  
Vol 7 (6) ◽  
pp. e2279 ◽  
Author(s):  
Pedro H. N. Aguiar ◽  
Carolina Furtado ◽  
Bruno M. Repolês ◽  
Grazielle A. Ribeiro ◽  
Isabela C. Mendes ◽  
...  

1998 ◽  
Vol 150 (6) ◽  
pp. 612 ◽  
Author(s):  
D. Pang ◽  
B. L. Berman ◽  
S. Chasovskikh ◽  
J. E. Rodgers ◽  
A. Dritschilo

2016 ◽  
Vol 473 (23) ◽  
pp. 4373-4384 ◽  
Author(s):  
Lei Wang ◽  
Lianzhi Li ◽  
Huaisheng Wang ◽  
Jifeng Liu

Human fibrinogen is an important coagulation factor as well as an independent predictor of coronary heart disease and stroke. Analysis of dysfibrinogens may provide useful information and help us to understand the molecular defects in fibrin polymerization. In the present study, we investigated the influence of oxidative stress of fibrinogen induced by H2O2 on the polymerization state of fibrin. UV absorbance spectroscopy, circular dichroism, ζ-potential, dynamic light scattering and steady shear viscosity were all employed to study the influence of oxidative stress on the molecular structure, the surface charges, and the size and shape of fibrinogen molecules. The fibrin morphology obtained was imaged and investigated using atomic force microscopy. The results demonstrated that the cross-linking, branching and height distribution of formed fibrin will be influenced by the oxidative stress of fibrinogen. This study presents new insights into the aggregation behaviour of fibrinogen and will be helpful to understand the formation mechanism of thrombosis under oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document