scholarly journals Human placental extract ameliorates methotrexate-induced hepatotoxicity in rats via regulating antioxidative and anti-inflammatory responses

Author(s):  
Mamdooh Ghoneum ◽  
Mohamed S. A. El-Gerbed

Abstract Purpose Methotrexate (MTX) induces hepatotoxicity, limiting its clinical efficacy as a widely known chemotherapy drug. In the current study, we examined the protective effect of human placenta extract (HPE) against MTX-induced liver damage in rats, as well as its ability to regulate antioxidative and anti-inflammatory liver responses. Methods Male rats were orally administered MTX at a daily dose of 5 mg/kg-body-weight in the presence or absence of HPE (10.08 mg/kg) for 2 weeks. We measured the biological effects of MTX and HPE on the levels of liver enzymes, lipid profile, lipid peroxidation, oxidative stress biomarkers, and cytokines [tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10)]. In addition, histological examination and histopathological scoring of liver tissues were performed. Results MTX-treated rats showed significantly increased (p < 0.001) liver enzyme levels for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, total cholesterol, and triglyceride levels. However, HPE supplementation in MTX-treated rats significantly decreased (p < 0.001) these elevated levels. HPE supplementation also significantly reduced the oxidative stress biomarker malondialdehyde (MDA), reversed the reduction in glutathione (GSH), and markedly increased the antioxidant enzyme activities of catalase (CAT) and superoxide dismutase (SOD) in the livers of MTX-treated rats. Furthermore, HPE supplementation significantly decreased the MTX-elevated levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-10. Histopathological examinations showed that MTX produced severe cellular damage and inflammatory lesions in liver tissues, while treatment with HPE improved hepatic histologic architecture. Conclusion HPE has the ability to ameliorate methotrexate-induced liver injury in rats by mechanisms that include boosting antioxidative responses and down-regulating MDA and pro-inflammatory cytokine production.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2163 ◽  
Author(s):  
Nilson Carlos Ferreira Junior ◽  
Maurício dos Santos Pereira ◽  
Nour Francis ◽  
Paola Ramirez ◽  
Paula Martorell ◽  
...  

We used mouse microglial cells in culture activated by lipopolysaccharide (LPS) or α-synuclein amyloid aggregates (αSa) to study the anti-inflammatory effects of COL-3, a tetracycline derivative without antimicrobial activity. Under LPS or αSa stimulation, COL-3 (10, 20 µM) efficiently repressed the induction of the microglial activation marker protein Iba-1 and the stimulated-release of the pro-inflammatory cytokine TNF-α. COL-3′s inhibitory effects on TNF-α were reproduced by the tetracycline antibiotic doxycycline (DOX; 50 µM), the glucocorticoid dexamethasone, and apocynin (APO), an inhibitor of the superoxide-producing enzyme NADPH oxidase. This last observation suggested that COL-3 and DOX might also operate themselves by restraining oxidative stress-mediated signaling events. Quantitative measurement of intracellular reactive oxygen species (ROS) levels revealed that COL-3 and DOX were indeed as effective as APO in reducing oxidative stress and TNF-α release in activated microglia. ROS inhibition with COL-3 or DOX occurred together with a reduction of microglial glucose accumulation and NADPH synthesis. This suggested that COL-3 and DOX might reduce microglial oxidative burst activity by limiting the glucose-dependent synthesis of NADPH, the requisite substrate for NADPH oxidase. Coherent with this possibility, the glycolysis inhibitor 2-deoxy-D-glucose reproduced the immunosuppressive action of COL-3 and DOX in activated microglia. Overall, we propose that COL-3 and its parent compound DOX exert anti-inflammatory effects in microglial cells by inhibiting glucose-dependent ROS production. These effects might be strengthened by the intrinsic antioxidant properties of DOX and COL-3 in a self-reinforcing manner.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S89-S89
Author(s):  
Herbert Haller ◽  
Mehmet Demircan ◽  
Kubilay Gurunluoglu

Abstract Introduction Oxidative stress is part of the physiological response to local thermal injuries and has systemic effects in more extensive burns, vascular hyperpermeability, burn edema, cellular damage, and functions of the heart, lung, liver, kidneys, muscles, and other organs. Free NO and OH radicals affect mitochondrial function, and lower energy delivery to other organelles releases thermal energy, leading to hypermetabolism. Antioxidant therapies have attempted to reduce the consequences of oxidative stress with limited effects; however, the effect of external dressings is unclear. This study aimed to investigate the positive effects of polylactide-based membranes (PLM) on oxidative stress and clinical outcomes in burns. Methods Herein, a prospective study assessed the correlation between oxidative stress and the severity of injuries by measuring serum malonaldehyde (MDA) and glutathione levels and the total oxidant and antioxidant capacities (TOC and TAC) among children with electrical injuries. Furthermore, a prospective randomized study evaluated the TOC and TAC, MDA, glutathione, IL-6, TNF-α, and TGF-β levels, and the ratio of telomerase positive staining in epidermal cells along the particle thickness of burns in children, when comparing polylactide dressings to Hydrofiber Ag(HFAg), autografts, and controls. Results Coherence between measured oxidative stress and injury severity was apparent herein. Application of PLMs significantly reduced oxidative stress in partial-thickness burns compared to HFAg. PLMs decreased the TOC (4,91 VS. 16,78 µmol/L, day 7) and increased the TAC (14,47 VS. 4,34 µmol/L, day 7). The healing duration was lesser than that of HFAg (13 VS. 21 d). Proinflammatory IL-6 levels were significantly lower in the PLM group and TNF-α values were significantly reduced from days 7 to 14. The anti-inflammatory levels of TGF-β was significantly elevated (days 3–21) in the PLM Group. Telomerase levels and the cell count were higher in healed skin in the PLM group. Conclusions Oxidative stress depends on injury severity and is potentially influenced by dressings. PLM mediates the regulation of oxidative stress, as evident from the TOC and TAC, and pro- and anti-inflammatory cytokines including IL-6, TNF-α, and TGF-β by PLMs might positively influence the healing duration and skin quality in burns. These results could show that oxidative stress can be significantly influenced and reduced by PLM dressings.


2016 ◽  
Vol 36 (2) ◽  
pp. 113-122 ◽  
Author(s):  
A Thirupathi ◽  
PC Silveira ◽  
RT Nesi ◽  
RA Pinho

Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Attenuation of fibrogenic process can significantly lower the mortality rate. However, pharmaceutical intervention at fibrogenesis stage remains a major task in medicine. So there is a need for a natural compound to treat hepatic fibrosis. This study was outlined to investigate the anti-fibrotic effect of β-amyrin in dimethylnitrosamine (DMN)-induced hepatic fibrosis male rats. Serum liver function markers (aspartate transaminase, alanine transaminase, alkaline phosphatase and lactate dehydrogenase), oxidative stress markers (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, glutathione reduced content and vitamin C), tissue inflammatory marker (tumor necrosis factor α (TNF-α)), apoptosis marker (caspase 3) and fibrolytic marker (tissue inhibitor of metalloproteinase 1 (TIMP-1)) were evaluated before and after β-amyrin treatment in DMN-induced rat. β-Amyrin treatment attenuated the altered levels of the serum enzyme markers produced by DMN and caused a subsequent recovery toward normalization. Oxidative stress markers and TNF-α levels were reduced significantly ( p < 0.001) as well as proteins’ (caspase-3 and TIMP-1) expression was reduced in β-amyrin –treated DMN rats. By virtue of β-amyrin properties of inhibiting oxidative stress, apoptosis, inflammation, and fibrogenesis, it might act as an ideal anti-inflammatory and anti-fibrogenic agent to halt the progression of liver fibrosis to chronicity.


2021 ◽  
Vol 22 (2) ◽  
pp. 488
Author(s):  
Young-Su Yi

Inflammation, an innate immune response that prevents cellular damage caused by pathogens, consists of two successive mechanisms, namely priming and triggering. While priming is an inflammation-preparation step, triggering is an inflammation-activation step, and the central feature of triggering is the activation of inflammasomes and intracellular inflammatory protein complexes. Flavonoids are natural phenolic compounds predominantly present in plants, fruits, and vegetables and are known to possess strong anti-inflammatory activities. The anti-inflammatory activity of flavonoids has long been demonstrated, with the main focus on the priming mechanisms, while increasing numbers of recent studies have redirected the research focus on the triggering step, and studies have reported that flavonoids inhibit inflammatory responses and diseases by targeting inflammasome activation. Rheumatic diseases are systemic inflammatory and autoimmune diseases that primarily affect joints and connective tissues, and they are associated with numerous deleterious effects. Here, we discuss the emerging literature on the ameliorative role of flavonoids targeting inflammasome activation in inflammatory rheumatic diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2021 ◽  
pp. 096032712199190
Author(s):  
AA Dar ◽  
A Fehaid ◽  
S Alkhatani ◽  
S Alarifi ◽  
WS Alqahtani ◽  
...  

Methotrexate (MTX) is frequently used drug in treatment of cancer and autoimmune diseases. Unfortunately, MTX has many side effects including the hepato-renal toxicity. In this study, we hypothesized that Luteolin (Lut) exhibits protective effect against the MTX-induced hepato-renal toxicity. In order to investigate our hypothesis, the experiment was designed to examine the effect of exposure of male rats to MTX (20 mg/kg, i.p., at day 9) alone or together with Lut (50 mg/kg, oral for 14 days) compared to the control rats (received saline). The findings demonstrated that MTX treatment induced significant increases in the liver and kidney functions markers in serum samples including Aspartate transaminase (AST), Alanine transaminase (ALT), creatinine, urea and uric acid. MTX also mediated an oxidative stress expressed by elevated malondialdehyde (MDA) level and decreased level of reduced glutathione (GSH), antioxidant enzyme activities, and downregulation of the Nrf2 gene expression as an antioxidant trigger. Moreover, the inflammatory markers (NF-κB, TNF-α, and IL-1β) were significantly elevated upon MTX treatment. In addition, MTX showed an apoptotic response mediated by elevating the pro-apoptotic (Bax) and lowering the anti-apoptotic (Bcl-2) proteins. All of these changes were confirmed by the observed alterations in the histopathological examination of the hepatic and renal tissues. Lut exposure significantly reversed all the MTX-induced changes in the measured parameters suggesting its potential protective role against the MTX-induced toxicity. Finally, our findings concluded the antioxidative, anti-inflammatory and anti-apoptotic effects of Lut as a mechanism of its protective role against the MTX-induced hepato-renal toxicity in rats.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Reza Shirazinia ◽  
Ali Akbar Golabchifar ◽  
Vafa Baradaran Rahimi ◽  
Abbas Jamshidian ◽  
Alireza Samzadeh-Kermani ◽  
...  

Lead is one of the most common environmental contaminants in the Earth’s crust, which induces a wide range of humans biochemical changes. Previous studies showed that Opuntia dillenii (OD) fruit possesses several antioxidant and anti-inflammatory properties. The present study evaluates OD fruit hydroalcoholic extract (OHAE) hepatoprotective effects against lead acetate- (Pb-) induced toxicity in both animal and cellular models. Male rats were grouped as follows: control, Pb (25 mg/kg/d i.p.), and groups 3 and 4 received OHAE at 100 and 200 mg/kg/d + Pb (25 mg/kg/d i.p.), for ten days of the experiment. Thereafter, we evaluated the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), catalase (CAT) activity and malondialdehyde (MDA) in serum, and liver histopathology. Additionally, the cell study was also done using the HepG2 cell line for measuring the direct effects of the extract on cell viability, oxidative stress MDA, and glutathione (GSH) and inflammation tumor necrosis factor-α (TNF-α) following the Pb-induced cytotoxicity. Pb significantly increased the serum levels of ALT, AST, ALP, and MDA and liver histopathological scores but notably decreased CAT activity compared to the control group ( p < 0.001 for all cases). OHAE (100 and 200 mg/kg) significantly reduced the levels of serum liver enzyme activities and MDA as well as histopathological scores while it significantly increased CAT activity compared to the Pb group ( p < 0.001 –0.05 for all cases). OHAE (20, 40, and 80 μg/ml) concentration dependently and significantly reduced the levels of MDA and TNF-α, while it increased the levels of GSH and cell viability in comparison to the Pb group ( p < 0.001 –0.05 for all cases). These data suggest that OHAE may have hepatoprotective effects against Pb-induced liver toxicity both in vitro and in vivo by its antioxidant and anti-inflammatory activities.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Na-Young Park ◽  
Giuseppe Valacchi ◽  
Yunsook Lim

Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA), a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage). We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.


2016 ◽  
Vol 38 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Xiaorong Hu ◽  
Ruisong Ma ◽  
Jiajia Lu ◽  
Kai Zhang ◽  
Weipan Xu ◽  
...  

Background/Aims: Inflammation and oxidative stress play an important role in myocardial ischemia and reperfusion (I/R) injury. We hypothesized that IL-23, a pro-inflammatory cytokine, could promote myocardial I/R injury by increasing the inflammatory response and oxidative stress. Methods: Male Sprague-Dawley rats were randomly assigned into sham operated control (SO) group, ischemia and reperfusion (I/R) group, (IL-23 + I/R) group and (anti-IL-23 + I/R) group. At 4 h after reperfusion, the serum concentration of lactate dehydrogenase (LDH), creatine kinase (CK) and the tissue MDA concentration and SOD activity were measured. The infarcte size was measured by TTC staining. Apoptosis in heart sections were measured by TUNEL staining. The expression of HMGB1 and IL-17A were detected by Western Blotting and the expression of TNF-α and IL-6 were detected by Elisa. Results: After 4 h reperfusion, compared with the I/R group, IL-23 significantly increased the infarct size, the apoptosis of cardiomyocytes and the levels of LDH and CK (all P < 0.05). Meanwhile, IL-23 significantly increased the expression of eIL-17A, TNF-α and IL-6 and enhanced both the increase of the MDA level and the decrease of the SOD level induced by I/R (all P<0.05). IL-23 had no effect on the expression of HMGB1 (p > 0.05). All these effects were abolished by anti-IL-23 administration. Conclusion: The present study suggested that IL-23 may promote myocardial I/R injury by increasing the inflammatory responses and oxidative stress reaction.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: &#8211;]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


Sign in / Sign up

Export Citation Format

Share Document