scholarly journals Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 295
Author(s):  
Ning Wang ◽  
Matthias Zeisberger ◽  
Uwe Hübner ◽  
Markus A. Schmidt

The efficient incoupling of light into particular fibers at large angles is essential for a multitude of applications; however, this is difficult to achieve with commonly used fibers due to low numerical aperture. Here, we demonstrate that commonly used optical fibers functionalized with arrays of metallic nanodots show substantially improved large-angle light-collection performances at multiple wavelengths. In particular, we show that at visible wavelengths, higher diffraction orders contribute significantly to the light-coupling efficiency, independent of the incident polarization, with a dominant excitation of the fundamental mode. The experimental observation is confirmed by an analytical model, which directly suggests further improvement in incoupling efficiency through the use of powerful nanostructures such as metasurface or dielectric gratings. Therefore, our concept paves the way for high-performance fiber-based optical devices and is particularly relevant within the context of endoscopic-type applications in life science and light collection within quantum technology.

Author(s):  
Yih-Tun Tseng ◽  
Jhong-Bin Huang ◽  
Che-Hsin Lin ◽  
Chin-Lung Chen ◽  
Wood-Hi Cheng

The GI (graded-index) POFs (Plastic optical fibers), which has been proven to reach distances as long as 1 km at 1.25 Gb/s has a relatively low numerical aperture . Therefore, the efficient coupling of GI POFs to the light source has become critical to the power budget in the system. Efficient coupling for a POFs system normally involves either a separate lens or the direct formation of the lens at the end of the fiber. Forming the lens-like structure directly on the fiber end is preferred for simplicity of fabrication and packaging, such as polishing and fusion, combine different fibers with the cascaded fiber method and hydroflouride (HF) chemical etching. These approaches are well established, but applicable only to glass. Optical assembly architecture for multichannel fibers and optical devices is critical to optical fiber interconnections. Multichannel fiber-pigtail laser diode (LD) modules have potential for supporting higher data throughput and longer transmission distances. However, to be of practical use, these modules must be more precise. This work proposes and manufactures lensed plastic optical fibers (LPOF) array. This novel manipulation can be utilized to fabricate an aspherical lens on a fiber array after the UV curing of the photo-sensitive polymer; the coupling efficiency (CE) is increased and exceeds 47% between the LD array and the fiber array.


2014 ◽  
Vol 25 (1) ◽  
pp. 169-185
Author(s):  
Samuel Ángel Jaramillo Flórez ◽  
Yuli Fernanda Achipiz

The bioelectronics takes of the biology the optimized elements for to do a copy and to build technological mechanisms with functions based in that of body lives components. Telecommunications and biology present an analogy between the optical receivers and insects eyes, which forms are adequate to receipt signal since a transmitter, and these are been leaded to perfection by the nature during millions of years in the environment adaptation. The sizes and the forms depend of the direction of the waves and of the radiation pattern of these biotransmitters and bioreceivers (omatidies of insects eyes), which is similar as the optical communications emitters and photodetectors. The growth of the telecommunication services makes necessary the optimization of the bandwidth of the transmission channels. Although the optic transmission is considered like the ideal as for the attenuation and distortion characteristics that make that it possesses the better relation bandwidth - longitude, the demand of more transmission capacity forces to take advantage of them efficiently. High costs generated when deploying Optic Fiber Networks at the transport level, together with other factors that avoid PONs arriving to the home and/or office, have impulsed the design and implementation of partially optical networks (FITL), including an alternative that uses infrared light. This work explores the basis of these news access networks, and it is presented an optical communication transmission/reception system with optic channel of free space where has been modulated the transmitter laser through a set of spherical lens and optical fibers that expand the beam of light to different points of an indoor enclosure producing multiple punctual images located in positions that permit to determine and to optimize the bandwidth of the system. The computational simulation results are showed and are compared with those experimentally measured, indicating that this is an original method for to design emitters and receivers of high performance for optical communications.


2011 ◽  
Vol 2011 (1) ◽  
pp. 001058-001066
Author(s):  
Roy J. Bourcier

High performance laser-based optoelectronic devices commonly feature the use of free-space optical coupling between the laser diode and optical elements such as filters, secondary harmonic generators and optical fibers. A critical challenge in the assembly of such components is maintaining the required optical alignment precision during attachment of the optical subcomponents to a common platform. In the case of devices based on single mode waveguides, the post-attach shift must often be held to less than a few hundred nanometers to achieve the desired optical coupling efficiency. Historically, these tight tolerances have required the use of costly post-work operations such as laser hammering or re-bend to achieve performance objectives. Over the course of designing several such optoelectronic components, we have used and developed a variety of design concepts and assembly processes which have allowed us to achieve these demanding tolerances, often without the use of post-work. UV-curable structural adhesives and Nd:YAG laser spot welding have been used, individually and in combination, to perform the required sub-micron optomechanical attachments. Several approaches which have been successfully used will be described and their relative merits will be compared. In addition, key design and process elements which can impact post-attach shift will be discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng-Hsin Chen ◽  
Cheng-Wei Yen ◽  
Chia-Chun Guo ◽  
Vin-Cent Su ◽  
Chieh-Hsiung Kuan ◽  
...  

AbstractThe growth of wide-bandgap materials on patterned substrates has revolutionized the means with which we can improve the light output power of gallium nitride (GaN) light-emitting diodes (LEDs). Conventional patterned structure inspection usually relies on an expensive vacuum-system-required scanning electron microscope (SEM) or optical microscope (OM) with bulky objectives. On the other hand, ultra-thin metasurfaces have been widely used in widespread applications, especially for converging lenses. In this study, we propose newly developed, highly efficient hexagon-resonated elements (HREs) combined with gingerly selected subwavelength periods of the elements for the construction of polarization-insensitive metalenses of high performance. Also, the well-developed fabrication techniques have been employed to realize the high-aspect-ratio metalenses working at three distinct wavelengths of 405, 532, and 633 nm with respective diffraction-limited focusing efficiencies of 93%, 86%, and 92%. The 1951 United States Air Force (USAF) test chart has been chosen to characterize the imaging capability. All of the images formed by the 405-nm-designed metalens show exceptional clear line features, and the smallest resolvable features are lines with widths of 870 nm. To perform the inspection capacity for patterned substrates, for the proof of concept, a commercially available patterned sapphire substrate (PSS) for the growth of the GaN LEDs has been opted and carefully examined by the high-resolution SEM system. With the appropriately chosen metalenses at the desired wavelength, the summits of structures in the PSS can be clearly observed in the images. The PSS imaging qualities taken by the ultra-thin and light-weight metalenses with a numerical aperture (NA) of 0.3 are comparable to those seen by an objective with the NA of 0.4. This work can pioneer semiconductor manufacturing to choose the polarization-insensitive GaN metalenses to inspect the patterned structures instead of using the SEM or the bulky and heavy conventional objectives.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 666 ◽  
Author(s):  
Lirong Cheng ◽  
Simei Mao ◽  
Zhi Li ◽  
Yaqi Han ◽  
H. Fu

Silicon photonics is an enabling technology that provides integrated photonic devices and systems with low-cost mass manufacturing capability. It has attracted increasing attention in both academia and industry in recent years, not only for its applications in communications, but also in sensing. One important issue of silicon photonics that comes with its high integration density is an interface between its high-performance integrated waveguide devices and optical fibers or free-space optics. Surface grating coupler is a preferred candidate that provides flexibility for circuit design and reduces effort for both fabrication and alignment. In the past decades, considerable research efforts have been made on in-plane grating couplers to address their insufficiency in coupling efficiency, wavelength sensitivity and polarization sensitivity compared with out-of-plane edge-coupling. Apart from improved performances, new functionalities are also on the horizon for grating couplers. In this paper, we review the current research progresses made on grating couplers, starting from their fundamental theories and concepts. Then, we conclude various methods to improve their performance, including coupling efficiency, polarization and wavelength sensitivity. Finally, we discuss some emerging research topics on grating couplers, as well as practical issues such as testing, packaging and promising applications.


2019 ◽  
Vol 7 (40) ◽  
pp. 12704-12708 ◽  
Author(s):  
Shaozuo Huang ◽  
Huan Chen ◽  
Tao He ◽  
Changjian Zhang ◽  
Chengyun Zhang ◽  
...  

Upconversion luminescence-based waveguides can achieve optical signal transmission and visible light emission with near-infrared light excitation and their quality is highly dependent on the coupling efficiency between the light and waveguide.


2016 ◽  
Vol 113 (38) ◽  
pp. 10473-10478 ◽  
Author(s):  
Robert C. Devlin ◽  
Mohammadreza Khorasaninejad ◽  
Wei Ting Chen ◽  
Jaewon Oh ◽  
Federico Capasso

Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.


Sign in / Sign up

Export Citation Format

Share Document