scholarly journals Ultrahigh-Q Tunable Terahertz Absorber Based on Bulk Dirac Semimetal with Surface Lattice Resonance

Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Zhiyong Wang ◽  
Yanghong Ou ◽  
Shiyu Wang ◽  
Yanzi Meng ◽  
Zi Wang ◽  
...  

In this paper, we present an easy-to-implement metamaterial absorber based on bulk Dirac semimetal (BDS). The proposed device not only obtains an ultrahigh quality factor (Q-factor) of 4133 and dynamic adjustability at high absorption, but also exhibits an excellent sensing performance with a figure of merit (FOM) of 4125. These outstanding properties are explained by the surface lattice resonance, which allows us to improve the quality factor significantly and control resonance wavelength precisely by tuning the unit cell periods, Fermi energy of the BDS, and structural parameters. Our findings can provide high-performance applications in terahertz filtering, detection, and biochemical sensing.

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 244
Author(s):  
Jingyu Zhang ◽  
Hengli Feng ◽  
Yang Gao

A kind of plasmonic structure consisted of an equilateral triangle-shaped cavity (ETSC) and a metal-insulator-metal (MIM) waveguide is proposed to realize triple Fano resonances. Numerically simulated by the finite difference time domain (FDTD) method, Fano resonances inside the structure are also explained by the coupled mode theory (CMT) and standing wave theory. For further research, inverting ETSC could dramatically increase quality factor to enhance resonance wavelength selectivity. After that, a bar is introduced into the ETSC and the inverted ETSC to increase resonance wavelengths through changing the structural parameters of the bar. In addition, working as a highly efficient narrowband filter, this structure owes a good sensitivity (S = 923 nm/RIU) and a pretty high-quality factor (Q = 322) along with a figure of merit (FOM = 710). Additionally, a narrowband peak with 1.25 nm Full-Width-Half-Maximum (FWHM) can be obtained. This structure will be used in highly integrated optical circuits in future.


2019 ◽  
Vol 9 (5) ◽  
pp. 397-404
Author(s):  
Min Zhong ◽  
Xiaoting Jiang ◽  
Xuliang Zhu ◽  
Jing Zhang ◽  
Jinglin Zhong

A tunable terahertz metamaterial absorber with four Dirac semimetal strips and a Dirac semimetal square is numerically studied. An absorption peak (72.5%) is achieved at resonant frequency 1.51 THz based on the local surface plasmons mode resonance on edges of Dirac semimetal square and strips synchronously. Absorption peak can be enhanced by optimizing the vertical (W1) or horizontal distance (W2) between Dirac semimetal strips and square. Moreover, new absorption resonance properties are obtained (new absorption peaks and bands). when W1 = 320 nm, a new unit cell "Structure 2" is obtained. And when W2 = 320 nm, a new unit cell "Structure 3" is also achieved. The absorption peak is also can be enhanced through changing the Fermi energy or the temperature. Finally, this proposed absorber shows high performance properties under the incidence angle 60°.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Wenjing Zhao ◽  
Aiguo Ming ◽  
Makoto Shimojo

To design a soft robotic fish with high performance by a biomimetic method, we are developing a soft robotic fish using piezoelectric fiber composite (PFC) as a flexible actuator. Compared with the conventional rigid robotic fish, the design and control of a soft robotic fish are difficult due to large deformation of flexible structure and complicated coupling dynamics with fluid. That is why the design and control method of soft robotic fish have not been established and they motivate us to make a further study by considering the interaction between flexible structure and surrounding fluid. In this paper, acoustic fluid-structural coupling analysis is applied to consider the fluid effect and predict the dynamic responses of soft robotic fish in the fluid. Basic governing equations of soft robotic fish in the fluid are firstly described. The numerical coupling analysis is then carried out based on different structural parameters of soft robotic fish. Through the numerical analysis, a new soft robotic fish is finally designed, and experimental evaluation is performed. It is confirmed that the larger swimming velocity and better fish-like swimming performance are obtained from the new soft robotic fish. The new soft robotic fish is developed successfully for high performance.


2021 ◽  
Author(s):  
Yongqiang Kang ◽  
Jun Wang ◽  
Homgmei Liu

Abstract We proposed a dual-band polarization-insensitive metamaterial absorber consisting of merely the metal square patch and a continuous metal ground separated by a middle dielectric layer. Two resonance peaks derived from `the fundamental resonance (with 97% absorbance) and the surface lattice resonance (with 99% absorbance) are realized. It is different from previous work the dual-band response is obtained by combining two resonances of different sizes. Moreover, a first-order diffraction mode of grating predicted the resonance wavelength of the proposed absorber. The surface electromagnetic field distributions of the unit-cell structure reveal the physical origin of the dual-band absorption. Importantly, the first absorption peak result from surface lattice resonance with narrow line-width has large sensitivity perform and high quality factor, which has significant potential in the application of biosensors and monitoring.


2021 ◽  
Author(s):  
Yongqiang Kang ◽  
Jun Wang ◽  
Hongmei Liu

Abstract We proposed a dual-band polarization-insensitive metamaterial absorber consisting of merely the metal square patch and a continuous metal ground separated by a middle dielectric layer. Two resonance peaks derived from `the fundamental resonance (with 97% absorbance) and the surface lattice resonance (with 99% absorbance) are realized. It is different from previous work the dual-band response is obtained by combining two resonances of different sizes. Moreover, a first-order diffraction mode of grating predicted the resonance wavelength of the proposed absorber. The surface electromagnetic field distributions of the unit-cell structure reveal the physical origin of the dual-band absorption. Importantly, the first absorption peak result from surface lattice resonance with narrow line-width has large sensitivity perform and high quality factor, which has significant potential in the application of biosensors and monitoring.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1947-C8-1948
Author(s):  
J. Miltat ◽  
P. Trouilloud

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


2021 ◽  
Vol 170 ◽  
pp. 112529
Author(s):  
N. Cruz ◽  
A.J.N. Batista ◽  
J.M. Cardoso ◽  
B.B. Carvalho ◽  
P.F. Carvalho ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew W. Puckett ◽  
Kaikai Liu ◽  
Nitesh Chauhan ◽  
Qiancheng Zhao ◽  
Naijun Jin ◽  
...  

AbstractHigh quality-factor (Q) optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. Integration in a photonic waveguide platform is key to reducing cost, size, power and sensitivity to environmental disturbances. However, to date, the Q of all-waveguide resonators has been relegated to below 260 Million. Here, we report a Si3N4 resonator with 422 Million intrinsic and 3.4 Billion absorption-limited Qs. The resonator has 453 kHz intrinsic, 906 kHz loaded, and 57 kHz absorption-limited linewidths and the corresponding 0.060 dB m−1 loss is the lowest reported to date for waveguides with deposited oxide upper cladding. These results are achieved through a careful reduction of scattering and absorption losses that we simulate, quantify and correlate to measurements. This advancement in waveguide resonator technology paves the way to all-waveguide Billion Q cavities for applications including nonlinear optics, atomic clocks, quantum photonics and high-capacity fiber communications.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1399
Author(s):  
Karina Yévenes ◽  
Ekaterina Pokrant ◽  
Lina Trincado ◽  
Lisette Lapierre ◽  
Nicolás Galarce ◽  
...  

Tetracyclines, sulphonamides, and quinolones are families of antimicrobials (AMs) widely used in the poultry industry and can excrete up to 90% of AMs administrated, which accumulate in poultry litter. Worryingly, poultry litter is widely used as an agriculture fertilizer, contributing to the spread AMs residues in the environment. The aim of this research was to develop a method that could simultaneously identify and quantify three AMs families in poultry litter by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Samples of AMs free poultry litter were used to validate the method according to 657/2002/EC and VICH GL49. Results indicate that limit of detection (LOD) ranged from 8.95 to 20.86 μg kg−1, while limits of quantitation (LOQ) values were between 26.85 and 62.58 µg kg−1 of tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, enrofloxacin, ciprofloxacin, flumequine, sulfachloropyridazine, and sulfadiazine. Recoveries obtained ranged from 93 to 108%. The analysis of field samples obtained from seven commercial poultry flocks confirmed the adequacy of the method since it detected means concentrations ranging from 20 to 10,364 μg kg−1. This provides us an accurate and reliable tool to monitor AMs residues in poultry litter and control its use as agricultural fertilizer.


Sign in / Sign up

Export Citation Format

Share Document