scholarly journals Biomimetic Approaches to the Synthesis of Natural Disesquiterpenoids: An Update

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 677
Author(s):  
Diego Caprioglio ◽  
Stefano Salamone ◽  
Federica Pollastro ◽  
Alberto Minassi

Natural disesquiterpenoids represent a small group of secondary metabolites characterized by complex molecular scaffolds and interesting pharmacological profiles. In the last decade, more than 400 new disesquiterpenoids have been discovered and fully characterized, pointing out once more the “magic touch” of nature in the design of new compounds. The perfect blend of complex and unique architectures and biological activity has made sesquiterpene dimers an attractive and challenging synthetic target, inspiring organic chemists to find new and biomimetic approaches to replicate the efficiency and the selectivity of natural processes under laboratory conditions. In this work, we present a review covering the literature from 2010 to 2020 reporting all the efforts made in the total synthesis of complex natural disesquiterpenoids.

2012 ◽  
Vol 10 (2) ◽  
pp. 386-394 ◽  
Author(s):  
Jekaterina Rjabova ◽  
Vitālijs Rjabovs ◽  
Antonio Moreno Vargas ◽  
Elena Clavijo ◽  
Māris Turks

AbstractRecently, monosaccharide-triazole conjugates have proved to possess a large variety of useful biological activities. This paper describes synthesis of a new series of 3-deoxy-3-C-triazolylmethyl-allose derivatives. These new compounds are obtained from acetonide-protected 3-deoxy-3-azidomethyl allose and commercial alkynes via Cu(I) catalyzed 1,3-dipolar cycloaddition. The obtained molecular scaffolds differ from those described earlier by the presence of a methylene linker (-CH2-) between the C(3) of allose and the triazole moiety. It was demonstrated that acetonide-protected monosaccharide, 3-deoxy-3-C-(4-phenyl-1H-1,2,3-triazol-1-yl)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose, inhibited α-L-fucosidase for 26% at 0.1 mM concentration, but a deprotected analog, 3-deoxy-3-C-(4-(4-tert-butylphenyl)-1H-1,2,3-triazol-1-yl)methyl-β-d-allofuranose, showed 15% inhibition of β-glucosidase at 1 mM concentration.


2020 ◽  
Vol 27 ◽  
Author(s):  
Joana Santos ◽  
M. Fernanda Proença ◽  
Ana Joao Rodrigues ◽  
Patricia Patrício ◽  
H. Sofia Domingues

: Paroxetine is a potent inhibitor of serotonin reuptake and is widely prescribed for the treatment of depression and other neurological disorders. The synthesis of paroxetine and the possibility to prepare derivatives with a specific substitution pattern that may allow their use as biological probes, is an attractive topic especially for medicinal chemists engaged in neurosciences research. Considering the extensive work that was developed in the last decade on the total synthesis of paroxetine, this review summarizes the most important contributions in this field, organized according to the reagent that was used as starting material. Most of the methods allowed to prepare paroxetine in 4-9 steps with an overall yield of 9-66%. Despite the progress made in this area, there is still room for improvement, searching for new eco-friendly and sustainable synthetic alternatives.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


2021 ◽  
Author(s):  
Robert M. Hohlman ◽  
David H. Sherman

This review covers isolation, biological activity, an overview of total synthesis efforts and recent biosynthetic discoveries related to hapalindole-type indole alkaloids.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 210 ◽  
Author(s):  
Zbigniew Adamski ◽  
Linda L. Blythe ◽  
Luigi Milella ◽  
Sabino A. Bufo

Plants produce many secondary metabolites, which reveal biological activity [...]


1967 ◽  
Vol 57 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Margaret E. Richardson ◽  
D. J. W. Rose

An account is given of the history of chemical control Phthorimaea operculella (Zell.) in potato fields in Rhodesia since the introduction of DDt prior to 1952. The failure of DDT and endrin, in routine spraying, to control field infestations is reproted, and some evidence that this is due to insecticide resistance is given. The results of critical field trials made in 1961, 1964 and 1965 to evaluate a range of insecticides for control of P. operculella and for their effects on populations of Macrosiphum euphorbiae (Thos.) are presented, together with the results of some laboratory tests. Good control of P. operculella in the field was obtained with sprays of azinphos-methyl at the rate of 0.5 lb active ingredient in 20 gal. water per acre, and two new compounds, methidathion and chlorfenvinphos, showed promise for the future.


1986 ◽  
Vol 59 (6) ◽  
pp. 1897-1900 ◽  
Author(s):  
Mitsuaki Kodama ◽  
Usman S. F. Tambunan ◽  
Tetsuto Tsunoda ◽  
Shô Itô

1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


Sign in / Sign up

Export Citation Format

Share Document