scholarly journals Starch Synthesis-Related Genes (SSRG) Evolution in the Genus Oryza

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1057
Author(s):  
Karine E. Janner de Freitas ◽  
Railson Schreinert dos Santos ◽  
Carlos Busanello ◽  
Filipe de Carvalho Victoria ◽  
Jennifer Luz Lopes ◽  
...  

Cooking quality is an important attribute in Common/Asian rice (Oryzasativa L.) varieties, being highly dependent on grain starch composition. This composition is known to be highly dependent on a cultivar’s genetics, but the way in which their genes express different phenotypes is not well understood. Further analysis of variation of grain quality genes using new information obtained from the wild relatives of rice should provide important insights into the evolution and potential use of these genetic resources. All analyses were conducted using bioinformatics approaches. The analysis of the protein sequences of grain quality genes across the Oryza suggest that the deletion/mutation of amino acids in active sites result in variations that can negatively affect specific steps of starch biosynthesis in the endosperm. On the other hand, the complete deletion of some genes in the wild species may not affect the amylose content. Here we present new insights for Starch Synthesis-Related Genes (SSRGs) evolution from starch-specific rice phenotypes.

2020 ◽  
Author(s):  
Karine Elise Janner de Freitas ◽  
Railson Schreinert dos Santos ◽  
Carlos Busanello ◽  
Filipe de Carvalho Victoria ◽  
Jennifer Luz Lopes ◽  
...  

Abstract Background: Cooking quality is an important attribute in Common/Asian rice (Oryza sativa L.) varieties, being highly dependent on grain starch composition. This composition is known to be highly dependent on a cultivar’s genetics, but the way in which their genes express different phenotypes is not well understood. Further analysis of variation of grain quality genes using new information obtained from the wild relatives of rice should provide important insights into the evolution and potential use of these genetic resources.Findings: The analysis of the protein sequences of grain quality genes across the Oryza suggest that the deletion/mutation of amino acids in active sites result in variations that can negatively affect specific steps of starch biosynthesis in the endosperm. As observed in O. sativa subsp. japonica, the lower amylose content is probably related to the absence of a C-terminal domain in PUL, characterizing what we know as japonica genotypes. On the other hand, the complete deletion of some genes in the wild species do not affect the amylose content, as observed in the absence of GBSSII in starch biosynthesis of O. meridionalis, SSIV2 in O. glaberrima and DPE1 in O. brachyantha and O. nivara in which such modifications seem not to affect the final endosperm starch composition.Conclusion: Here we present new insights for obtaining new starch-specific rice phenotypes, considering structural protein features that include both the absence and duplication of copies, once again denoting that Oryza species are a rich source of variability for use in plant breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhang ◽  
Heng Xu ◽  
Yingying Jiang ◽  
Heng Zhang ◽  
Shiyu Wang ◽  
...  

Grain quality is one of the key targets to be improved for rice breeders and covers cooking, eating, nutritional, appearance, milling, and sensory properties. Cooking and eating quality are mostly of concern to consumers and mainly determined by starch structure and composition. Although many starch synthesis enzymes have been identified and starch synthesis system has been established for a long time, novel functions of some starch synthesis genes have continually been found, and many important regulatory factors for seed development and grain quality control have recently been identified. Here, we summarize the progress in this field as comprehensively as possible and hopefully reveal some underlying molecular mechanisms controlling eating quality in rice. The regulatory network of amylose content (AC) determination is emphasized, as AC is the most important index for rice eating quality (REQ). Moreover, the regulatory mechanism of REQ, especially AC influenced by high temperature which is concerned as a most harmful environmental factor during grain filling is highlighted in this review.


1971 ◽  
Vol 49 (10) ◽  
pp. 1787-1792 ◽  
Author(s):  
B. S. Mangat ◽  
N. P. Badenhuizen

Starch composition (amylose content) and the activities of starch-synthesizing enzymes were determined in cultures of Polytoma uvella and potatoes kept at various temperatures. In general ADPG-α-glucan glucosyltransferases were much less thermostable in vivo than P- and Q-enzymes. Potato phosphorylase proved to be the most stable enzyme. In Polytoma both P/Q ratio and amylose content decreased at 30 °C, whereas they remained unchanged in potatoes grown at 30 °C. This confirms the results from earlier experiments which indicated that the P/Q ratio is correlated with amylose content, and is also in agreement with the simultaneous increase in amylose percentage and P/Q ratio observed during the development of starch granules in corn endosperm. The results are discussed in relation to the problem of amylose production in starch granules and the importance of phosphorylase in starch synthesis.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Author(s):  
T.B. Kumeyko ◽  
◽  
N.G. Tumanian

The article studies the technological grain quality traits of rice varieties of Russian breeding Rapan, Flagman, Olimp, Azov, Patriot in the yield of 2017-2019 grown in the Abinsky district, Krasnodar region. Purpose of the research was to study the effect of doses of nitrogen fertilizers on the technological grain quality traits of rice varieties with a low amylose content. Rice varieties were evaluated by mass of 1000 absolutely dry grains, filminess, vitreousity, and fracture when grown with different doses of nitrogen fertilizers N60, N120. With an increase in the dose of nitrogen to N120, "the mass of 1000 absolutely dry grains", "vitreousity", "fracture" remained unchanged or the "filminess" changed. The pattern of changes in grain quality traits may indicate an intensive type of varieties Rapan and Olimp.


Author(s):  
Voichita HAS ◽  
Ioan HAS ◽  
Doru PAMFIL ◽  
Ana COPANDEAN ◽  
Sorin CAMPEAN

Maize grain has many and diverse uses in the food and feed industry. The diversity of applications requires characteristics of quality in accordance to that. To examine phenotypical diversity in the grain content, it was evaluated a total of 754 maize samples: 265 local populations (landraces); 59 synthetics/composites; 430 “TURDA” inbred lines for their grain quality attributes. Comparison of the inbred lines diversity is on average the most divergent in grain starch concentration (range value 19.9) from landraces (range value 11.8) and synthetics (range value 12.5). The grain oil and ash content showed high variability among the genotypes. The quality attributes in most of the cases showed positive phenotypic correlation except grain starch contents which was negatively correlated at phenotypic levels. The objective of this study was to evaluate the potential of maize “TURDA” germplasm in according to its grain quality content, such as: protein, oil, fiber, ash and starch concentration; to estimate the extent of phenotypical variability and correlation for various quality components to formulate a selection criterion in a breeding program.


2017 ◽  
Author(s):  
◽  
Bruce Mawoyo

Amadumbe commonly, known as taro is a traditionally underutilised tuber crop in Southern Africa. Nutritionally, amadumbe corms contain appreciable levels of carbohydrate mainly in the form of starch which is resistant to digestion. It also contains mucilage, a soluble fibre, which is good for the human digestive health. Thus, amadumbe starch and mucilage can be used as functional ingredients in food formulations. The aim of this research was to investigate the effects of genotypes and growth location on the physicochemical properties of amadumbe flour and starch. Eighteen (18) amadumbe genotypes grown in Roodeplaat, Gauteng and Umbumbulu, Kwazulu-Natal, South Africa, were studied. Roodeplaat received a lower annual average rainfall (514 mm) and high environmental temperature (24oC) compared to Umbumbulu (828 mm, 19oC) during the cropping season. Specifically, the influence of growth location and genotypes on the chemical composition (proximate composition and mineral contents) as well as the functional properties of amadumbe flours were investigated. Furthermore, starch was extracted and its physicochemical and functional properties were also studied. The carbohydrate contents (73-81%) of amadumbe flours were substantially high and varied with growth location. Mucilage contents (6-9%) were very low across genotypes in both locations. Water absorption and oil absorption capacities positively correlated to carbohydrates and mucilage in the flour irrespective of growth locations. Swelling power and solubility index was influenced by the amylose content of the flour. Genotype and growth location significantly affected the pasting properties of amadumbe flour. The pasting temperature was very high (approx. 90oC) across genotypes in both locations, while peak viscosity differed significantly (54-242 RVU) for genotypes grown in different environments. The amylose contents (0-14.4%) of amadumbe starches were low and varied significantly with growth location and among genotypes. Three genotypes, G2, G20, and G21 grown in Roodeplaat lacked amylose. Amadumbe starches showed reflective peaks at 2θ=15o and doublet at 17o, 18o and 24o typical of A-type starches. Amadumbe genotypes had small sized (1-5 µm) and polygonal starch granules. Functional properties including water absorption, swelling power, gelatinisation temperature and peak viscosity significantly positively correlated with amylose content. These findings further suggest that water availability could have a major effect on starch synthesis as the two locations received a different amount of rainfall during the growing season. Findings from this study are important for future improvement programmes and selection of appropriate genotypes for industrial production or food application of amadumbe flour and starch.


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 559-570 ◽  
Author(s):  
Mehrzad Allahgholipour ◽  
Ezatollah Farshdfar ◽  
Babak Rabiei

This study was conducted to determine the combining ability and heritability of rice grain yield, its components and some grain quality traits such as amylose content (AC), gelatinization temperature (GT), gel consistency (GC) and head rice recovery (HRR). The study was commenced by crossing the selected rice varieties based on a full diallel mating design. The F1 was harvested at the end of the season. In the following season, the crossed, reciprocal and parental lines were planted in randomly complete block design with three replications. Analysis of variance indicated that genotypes were significantly different for all traits. The diallel analysis by Griffing`s method showed highly significant differences for GCA for number of panicles per plant (PN), amylose content, gelatinization temperature and head rice recovery. Highly significant differences were also observed for both SCA and REC for all evaluated characters. The results showed that the grain yield (GY), number of filled grains (FGN), 100-grain weight (HGW) and GC were controlled by non-additive gene action, while the inheritance of PN, AC, GT and HRR were largely controlled by additive gene effects, although non- additive genetic components and reciprocal effect were also involved, which suggest that a selection process could be done in the early generations. The two improved lines (RI18442-1 and RI18430-46) were found to be good general combiners for GY and FGN, while the best combiners for PN was Tarom Mohali and IR50 and for HGW was RI18430-46. The best combinations for GY were RI18430-46 ? IR50, Tarom Mohali ? RI18447-2 and Daylamani ? RI18430-46. The good hybrids were Tarom Mohali ? IR50, Line23 ? RI18447-2 and Line23 ? Backcross line for AC. Narrow sense heritability showed that the GY and GC had the lowest values while the other traits had either moderate or high heritability, which indicates selection in the early generations could be done to fix the favorable genes. In present study, narrow sense heritability was high for AC and moderate for GT, PN and HRR.


2020 ◽  
Author(s):  
Adam Schoen ◽  
Anupama Joshi ◽  
Vijay K Tiwari ◽  
Bikram S. Gill ◽  
Nidhi Rawat

Abstract Background: Lack of nutritionally appropriate foods is one of the leading causes of obesity in the US and worldwide. Wheat (Triticum aestivum) provides 20% of the calories consumed daily across the globe. The nutrients in the wheat grain come primarily from the starch composed of amylose and amylopectin. Resistant starch content, which is known to have significant human health benefits, can be increased by modifying starch synthesis pathways. Starch synthase enzyme SSIIa, also known as starch granule protein isoform-1 (SGP-1), is integral to the biosynthesis of the branched and readily digestible glucose polymer amylopectin. The goal of this work was to develop a triple null mutant genotype for SSIIa locus in the elite hard red winter wheat variety ‘Jagger’ and evaluate the effect of the knock-out mutations on resistant starch content in grains with respect to wild type. Results: Knock-out mutations in SSIIa in the three genomes of wheat variety ‘Jagger’ were identified using TILLING. Subsequently, these loss-of function mutations on A, B, and D genomes were combined by crossing to generate a triple knockout mutant genotype Jag-ssiia-∆ABD. The Jag-ssiia-∆ABD had an amylose content of 35.70% compared to 31.15% in Jagger, leading to ~118% increase in resistant starch in the Jag-ssiia-∆ABD genotype of Jagger wheat. The single individual genome mutations also had various effects on starch composition. Conclusions: Our full null Jag-ssiia-∆ABD mutant showed a significant increase in RS without the shriveled grain phenotype seen in other ssiia knockouts in elite wheat cultivars. Moreover, this study shows the potential for developing nutritionally improved foods in a non-GM approach. Since all the mutants have been developed in an elite wheat cultivar, their adoption in production and supply will be feasible in future.


Sign in / Sign up

Export Citation Format

Share Document