scholarly journals Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1401
Author(s):  
Hazar Balti ◽  
Mejda Abassi ◽  
Karl-Josef Dietz ◽  
Vijay Kumar

In the face of rising salinity along coastal regions and in irrigated areas, molecular breeding of tolerant crops and reforestation of exposed areas using tolerant woody species is a two-way strategy. Thus, identification of tolerant plants and of existing tolerance mechanisms are of immense value. In the present study, three Eucalyptus ecotypes with potentially differential salt sensitivity were compared. Soil-grown Eucalyptus plants were exposed to 80 and 170 mM NaCl for 30 days. Besides analysing salt effects on ionic/osmotic balance, and hydrolytic enzymes, plants were compared for dynamics of light-induced redox changes in photosynthetic electron transport chain (pETC) components, namely plastocyanin (PC), photosystem I (PSI) and ferredoxin (Fd), parallel to traditional chlorophyll a fluorescence-based PSII-related parameters. Deconvoluted signals for PC and Fd from PSI allowed identification of PC and PSI as the prime salinity-sensitive components of pETC in tested Eucalyptus species. Eucalyptus loxophleba portrayed efficient K+-Na+ balance (60–90% increased K+) along with a more dynamic range of redox changes for pETC components in old leaves. Young leaves in Eucalyptus loxophleba showed robust endomembrane homeostasis, as underlined by an increased response of hydrolytic enzymes at lower salt concentration (~1.7–2.6-fold increase). Findings are discussed in context of salinity dose dependence among different Eucalyptus species.

2021 ◽  
Vol 22 (8) ◽  
pp. 4021
Author(s):  
Monika Kula-Maximenko ◽  
Kamil Jan Zieliński ◽  
Ireneusz Ślesak

Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nur Arafeh-Dalmau ◽  
Kyle C. Cavanaugh ◽  
Hugh P. Possingham ◽  
Adrian Munguia-Vega ◽  
Gabriela Montaño-Moctezuma ◽  
...  

AbstractKelp forests are globally important and highly productive ecosystems, yet their persistence and protection in the face of climate change and human activity are poorly known. Here, we present a 35-year time series of high-resolution satellite imagery that maps the distribution and persistence of giant kelp (Macrocystis pyrifera) forests along ten degrees of latitude in the Northeast Pacific Ocean. We find that although 7.7% of giant kelp is protected by marine reserves, when accounting for persistence only 4% of kelp is present and protected. Protection of giant kelp decreases southerly from 20.9% in Central California, USA, to less than 1% in Baja California, Mexico, which likely exacerbates kelp vulnerability to marine heatwaves in Baja California. We suggest that a two-fold increase in the area of kelp protected by marine reserves is needed to fully protect persistent kelp forests and that conservation of climate-refugia in Baja California should be a priority.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 276
Author(s):  
Wanying Chen ◽  
Bo Jia ◽  
Junyu Chen ◽  
Yujiao Feng ◽  
Yue Li ◽  
...  

The mutual shading among individual field-grown maize plants resulting from high planting density inevitably reduces leaf photosynthesis, while regulating the photosynthetic transport chain has a strong impact on photosynthesis. However, the effect of high planting density on the photosynthetic electron transport chain in maize currently remains unclear. In this study, we simultaneously measured prompt chlorophyll a fluorescence (PF), modulated 820 nm reflection (MR) and delayed chlorophyll a fluorescence (DF) in order to investigate the effect of high planting density on the photosynthetic electron transport chain in two maize hybrids widely grown in China. PF transients demonstrated a gradual reduction in their signal amplitude with increasing planting density. In addition, high planting density induced positive J-step and G-bands of the PF transients, reduced the values of PF parameters PIABS, RC/CSO, TRO/ABS, ETO/TRO and REO/ETO, and enhanced ABS/RC and N. MR kinetics showed an increase of their lowest point with increasing high planting density, and thus the values of MR parameters VPSI and VPSII-PSI were reduced. The shapes of DF induction and decay curves were changed by high planting density. In addition, high planting density reduced the values of DF parameters I1, I2, L1 and L2, and enhanced I2/I1. These results suggested that high planting density caused harm on multiple components of maize photosynthetic electron transport chain, including an inactivation of PSII RCs, a blocked electron transfer between QA and QB, a reduction in PSI oxidation and re-reduction activities, and an impaired PSI acceptor side. Moreover, a comparison between PSII and PSI activities demonstrated the greater effect of plant density on the former.


2002 ◽  
Vol 205 (11) ◽  
pp. 1625-1631 ◽  
Author(s):  
Dustin S. Hittel ◽  
Kenneth B. Storey

SUMMARYA cDNA library constructed from kidney of the thirteen-lined squirrel, Spermophilus tridecemlineatus, was differentially screened for genes that were upregulated during hibernation. A clone encoding cytochrome c oxidase subunit 1 was found and confirmed to have been upregulated by northern blotting. Differential expression of Cox1 mRNA occurred in multiple organs during hibernation; in hibernating animals transcript levels were twofold higher in kidney and fourfold higher in heart and brown adipose tissue than in euthermic animals, but were unchanged in skeletal muscle. Transcript levels of mitochondrial-encoded ATP synthase 6/8 were similarly upregulated in these tissues whereas transcript levels of the nuclear encoded subunits Cox4 and ATP synthase α did not change during hibernation. Immunoblot analysis revealed a 2.4-fold increase in Cox 1 protein and a slight decrease in Cox 4 protein in kidney of hibernating squirrels, compared with euthermic controls. Hibernating mammals may increase the expression of the mitochondrial genome in general, and Cox1specifically, to prevent or minimize the damage to the electron transport chain caused by the cold and ischemia experienced during a hibernation bout.


2020 ◽  
Vol 13 (9) ◽  
pp. 2903-2914 ◽  
Author(s):  
Andrey Kanygin ◽  
Yuval Milrad ◽  
Chandrasekhar Thummala ◽  
Kiera Reifschneider ◽  
Patricia Baker ◽  
...  

Photosystem I-hydrogenase chimera intercepts electron flow directly from the photosynthetic electron transport chain and directs it to hydrogen production.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 237-245 ◽  
Author(s):  
Julio Menendez ◽  
Fernando Bastida ◽  
Rafael de Prado

A downy brome population in a winter wheat field at Córdoba, Spain, survived use rates of chlortoluron (2.5 to 3.5 kg ai ha−1) over 2 consecutive yr, where wheat monoculture and multiple annual chlortoluron applications had been carried out. The resistant (CR) biotype showed a higher ED50value (7.4 kg ai ha−1; the concentration required for 50% reduction of fresh weight) than the susceptible (S) control (2.2 kg ai ha−1), with a 3.4-fold increase in chlortoluron tolerance. Chlortoluron resistance in the CR downy brome biotype was not caused by altered absorption, translocation, or modification of the herbicide target site but by enhanced detoxification. The inhibition of both the recovery of photosynthetic electron transport and chlortoluron metabolism in the CR biotype due to the presence of the Cyt P450 inhibitor 1-aminobenzotriazole (ABT) indicates that herbicide metabolism catalyzed by Cyt P450 monooxygenases is related to chlortoluron resistance in CR plants. Although both biotypes degraded chlortoluron byN-dealkylation and ring-methyl hydroxylation and seem to share the same ability to form polar conjugates, degradation in the resistant biotype is more efficacious as this biotype metabolizes the parent herbicide faster and to a greater extent than its susceptible counterpart. The ability of the susceptible biotype to ring-hydroxylate chlortoluron, albeit at much slower rate, probably explains its moderate tolerance to chlortoluron observed in the growth assays and its minor photosynthetic electron transport recovery observed in fluorescence measurements.


Sign in / Sign up

Export Citation Format

Share Document