scholarly journals Winter Frosts Reduce Flower Bud Survival in High-Mountain Plants

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1507
Author(s):  
Johanna Wagner ◽  
Karla Gruber ◽  
Ursula Ladinig ◽  
Othmar Buchner ◽  
Gilbert Neuner

At higher elevations in the European Alps, plants may experience winter temperatures of −30 °C and lower at snow-free sites. Vegetative organs are usually sufficiently frost hardy to survive such low temperatures, but it is largely unknown if this also applies to generative structures. We investigated winter frost effects on flower buds in the cushion plants Saxifraga bryoides L. (subnival-nival) and Saxifraga moschata Wulfen (alpine-nival) growing at differently exposed sites, and the chionophilous cryptophyte Ranunculus glacialis L. (subnival-nival). Potted plants were subjected to short-time (ST) and long-time (LT) freezing between −10 and −30 °C in temperature-controlled freezers. Frost damage, ice nucleation and flowering frequency in summer were determined. Flower bud viability and flowering frequency decreased significantly with decreasing temperature and exposure time in both saxifrages. Already, −10 °C LT-freezing caused the first injuries. Below −20 °C, the mean losses were 47% (ST) and 75% (LT) in S. bryoides, and 19% (ST) and 38% (LT) in S. moschata. Winter buds of both saxifrages did not supercool, suggesting that damages were caused by freeze dehydration. R. glacialis remained largely undamaged down to −30 °C in the ST experiment, but did not survive permanent freezing below −20 °C. Winter snow cover is essential for the survival of flower buds and indirectly for reproductive fitness. This problem gains particular relevance in the context of winter periods with low precipitation and winter warming events leading to the melting of the protective snowpack.

HortScience ◽  
1991 ◽  
Vol 26 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Kim Patten ◽  
Elizabeth Neuendorff ◽  
Gary Nimr ◽  
John R. Clark ◽  
Gina Fernandez

The relative tolerance of flower buds and flowers of southern highbush blueberry (Vaccinium spp.) to cold damage was compared to rabbiteye (Vaccinium ashei Reade) and highbush blueberry (Vaccinium corymbosum L.). For similar stages of floral bud development, southern highbush and highbush cultivars had less winter freeze and spring frost damage than rabbiteye cultivars. Cold damage increased linearly with stage of flower bud development. Small fruit were more sensitive to frost damage than open flowers. Rabbiteye blueberry flower buds formed during the fall growth flush were more hardy than buds formed during the spring growth flush, regardless of cultivar or stage of development.


2006 ◽  
Vol 131 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Steven F. Berkheimer ◽  
Eric Hanson

Injury has been observed since the early to mid-1990s to highbush blueberries (Vaccinium corymbosum L.) growing along roads in southern Michigan. Symptoms include shoot dieback, flower bud mortality, and reduced yields. To determine if this injury was the result of deicing salts applied to roads, salt (sodium chloride, NaCl) spray was applied to potted blueberry plants, and to the plant root zones. Bushes sprayed six times during the winter with NaCl solutions (0, 0.034, 0.068, 0.137, 0.274, 0.548 m) developed the same injury symptoms observed in roadside fields, and injury severity was proportional to the spray concentration. The root media of other potted plants was saturated with NaCl solutions (0, 0.017, 0.051, 0.154, and 0.462 m) in Mar. 2002. Pots were then rinsed with fresh well water when growth began in April to determine if soil salt caused similar damage. The highest soil salt levels killed most above ground growth, and damage diminished with decreasing salt levels. Twigs were also excised from branches sprayed twice with NaCl solutions or water and frozen incrementally to measure the temperature resulting in 50% flower bud mortality (LT50). Salt exposure reduced the LT50 of flower buds, by as much as 11.5 °C, relative to the control, even within 2 days of treatment. Additional studies with chloride salts (NaCl, KCl, CaCl2, MgCl2) and sodium salts (NaCl, Na-acetate, Na2SO4) indicated that most reduced the cold tolerance of blueberry flower buds to some degree.


HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1753-1758 ◽  
Author(s):  
Ossama Kodad ◽  
Rafel Socias i Company

Flower bud density, spur density, and number of flower buds per spur were evaluated in 57 almond cultivars and selections during 3 consecutive years to establish their repeatability as well as their potential to ensure a sustainable commercial production. These three traits showed a high variability with significant differences between genotypes and years as well as a significant interaction of genotype and year. The effect of location and the interaction of location and genotype were not significant for bud density, but they were for spur density and number of flower buds per spur. Variability of flower bud density is mostly related to the number of flower buds per spur as indicated by the higher repeatability of spur density than that of the other two traits. A high flower bud density is essential for a sustainable production, because a high number of flowers may compensate frost damage. Early selection for a high flower bud density can be done indirectly through selection for a high spur density but requires its evaluation over several years.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447d-447
Author(s):  
Meriam Karlsson ◽  
Jeffrey Werner

Nine-week-old plants of Cyclamen persicum `Miracle Salmon' were transplanted into 10-cm pots and placed in growth chambers at 8, 12, 16, 20, or 24 °C. The irradiance was 10 mol/day per m2 during a 16-h day length. After 8 weeks, the temperature was changed to 16 °C for all plants. Expanded leaves (1 cm or larger) were counted at weekly intervals for each plant. The rate of leaf unfolding increased with temperature to 20 °C. The fastest rate at 20 °C was 0.34 ± 0.05 leaf/day. Flower buds were visible 55 ± 7 days from start of temperature treatments (118 days from seeding) for the plants grown at 12, 16, or 20 °C. Flower buds appeared 60 ± 6.9 days from initiation of treatments for plants grown at 24 °C and 93 ± 8.9 days for cyclamens grown at 8 °C. Although there was no significant difference in rate of flower bud appearance for cyclamens grown at 12, 16, or 20 °C, the number of leaves, flowers, and flower buds varied significantly among all temperature treatments. Leaf number at flowering increased from 38 ± 4.7 for plants at 12 °C to 77 ± 8.3 at 24 °C. Flowers and flower buds increased from 18 ± 2.9 to 52 ± 11.0 as temperature increased from 12 to 24 °C. Plants grown at 8 °C had on average 6 ± 2 visible flower buds, but no open flowers at termination of the study (128 days from start of treatments).


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 137
Author(s):  
Rosina Magaña Ugarte ◽  
María Pilar Gómez-Serranillos ◽  
Adrián Escudero ◽  
Rosario G. Gavilán

Albeit the remarkably high Ultraviolet B loads, high temperatures, and drought stress substantiate the need for efficient photoprotective strategies in Mediterranean high-mountain plants, these remain understudied. Considering the sensitivity of photosystems to extreme conditions, we evaluated an environmental gradient’s weight on the photoprotection of five high-mountain specialists from Central Spain. Diurnal and seasonal variations in chlorophyll, chlorophyll fluorescence, carotenoids, and xanthophylls in consecutive and climatically contrasting years were taken to evaluate the effect of the impending climate coarsening at the photosystem level. Our results revealed significant differences among species in the xanthophyll cycle functioning, acting either as a continuous photoprotective strategy enhancing photochemistry-steadiness; or prompted only to counteract the cumulative effects of atypically adverse conditions. The lutein cycle’s involvement is inferred from the high lutein content found in all species and elevations, acting as a sustained photoprotective strategy. These findings added to high de-epoxidation state (DEPS) and minor seasonal changes in the chlorophyll a/b ratio, infer the xanthophyll and Lutein cycles are crucial for upkeeping the photosystems’ optimal functioning in these plants heightening their photoprotective capacity during periods of more unfavorable conditions. Nevertheless, an atypically dry growing season’s detrimental effect infers the feasible surpassing of stress-thresholds and the precariousness of the communities’ functional diversity under climate change.


2021 ◽  
Vol 22 (8) ◽  
pp. 3932
Author(s):  
Jing Cao ◽  
Qijiang Jin ◽  
Jiaying Kuang ◽  
Yanjie Wang ◽  
Yingchun Xu

The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.


1966 ◽  
Vol 46 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Walter J. Kender ◽  
Franklin P. Eggert

A field experiment using various soil management practices showed that the most effective means to increase blueberry plant spread was through the use of a surface mulch. Peat and sawdust were of equal suitability as a mulching material influencing vegetative growth, although sawdust did result in a reduction in the number of flower buds produced when compared with peat. Mulching was associated with a higher soil moisture content than non-mulched plots.Blueberry plants growing in nitrogen-treated plots had an increased flower bud number and rhizome growth in contrast with those growing in unfertilized plots. Nitrogen fertilization was of particular benefit when applied in association with surface organic mulches.Plants growing in an undisturbed soil were more vigorous than in a homogenized or tilled soil. Sawdust was found to be detrimental to the growth of lowbush blueberry plants when incorporated into a homogenized soil.


Author(s):  
Juan C. Mejía‐Giraldo ◽  
Cecilia Gallardo ◽  
Miguel A. Puertas‐Mejía

Sign in / Sign up

Export Citation Format

Share Document