scholarly journals Anti-Inflammatory Effects of Weigela subsessilis Callus Extract via Suppression of MAPK and NF-κB Signaling

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1635
Author(s):  
Hyeon-Ji Lim ◽  
Eun Yee Jie ◽  
In-Sun Park ◽  
Sang-Jun Kim ◽  
Woo Seok Ahn ◽  
...  

Weigela subsessilis is used in folk medicine to treat pain and allergic syndromes in Korea. However, the antibacterial and anti-inflammatory activities of W. subsessilis callus extract remain unexplored. In this study, we aimed to evaluate the W. subsessilis callus of pharmacological activity. Therefore, we first established in vitro calluses of W.subsessilis via plant tissue culture methods. We then evaluated the antioxidant and anti-inflammatory effects of W. subsessilis callus extract in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. The W. subsessilis callus extract showed antioxidant and anti-inflammatory effects. These effects were regulated via suppression of mitogen-activated protein kinase signaling through LPS-induced translocation of nuclear factor kappa B (NF-κB) p65 from the cytoplasm to the nucleus. W. subsessilis callus extract also showed antibacterial and anti-inflammatory activities in Propionibacterium acnes-treated HaCaT keratinocyte cells. These results indicate that W. subsessilis callus extract has antioxidant, antibacterial and anti-inflammatory activities, suggesting its possible application in the treatment of inflammatory disorders.

2021 ◽  
Vol 17 (7) ◽  
pp. 1426-1434
Author(s):  
Hairui Xie ◽  
Lili Zhou ◽  
Zhijiang Chen ◽  
Hong Zhao

Achondroplasia is a kind of congenital dysplasia due to the defect of endochondral ossification. Achondroplasia is considered to be a protein folding disease leading to endoplasmic reticulum stress. Endoplasmic reticulum stress may lead to disease by affecting the function and survival state of chondrocytes, but the specific mechanism requires further study. In this study, bioinformatics methods, online database mining, screening of differentially expressed genes for pathway enrichment, and interaction analysis were conducted to detect the Wnt family member 5a (Wnt5a) gene. Additionally, we designed a novel DNAzymes-based nanocomposite that can simultaneously silence Wnt5a genes in chondrocytes. The nanocomposite was composed of amino-functionalized cobalt oxyhydroxide nanoflakes modified by DNAzymes that target the Wnt5a gene. Further, we conducted in vitro experiments to verify that Wnt5a can mediate the mitogen-activated protein kinase signaling pathway through the endoplasmic reticulum stress pathway to affect the proliferation of chondrocytes.


2017 ◽  
Vol 45 (04) ◽  
pp. 847-861 ◽  
Author(s):  
Chia-Yang Li ◽  
Katsuhiko Suzuki ◽  
Yung-Li Hung ◽  
Meng-Syuan Yang ◽  
Chung-Ping Yu ◽  
...  

Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X1989976 ◽  
Author(s):  
Al B. Bayazid ◽  
Jae G. Kim ◽  
Seo H. Park ◽  
Beong O. Lim

Mori Cortex Radicis (MCR) is a well-known Korean and Chinese folk medicine with anti-obesity, anti-inflammatory, anti-asthmatic, and hypoglycemic activities. This study was aimed to evaluate the total phenolic and flavonoid contents, as well as intracellular antioxidant and anti-inflammatory effects of water and 70% (v/v) ethanol extracts of MCR. The antioxidant activities of MCR extracts were determined with diphenyl-2-picrylhydrazyl and 2,2′-azinobis[3-ethylbenzothiazoline-6-sulfonic] scavenging activity assays. The suppressive activities of MCR extracts on the production of nitric oxide (NO*) and the expression of cytokines, c-Fos, activated p38-Mitogen-activated protein kinase (MAPK), and Nuclear factor Kappa B (NF-κB) and splenocytes proliferation in lipopolysaccharide-treated macrophages were determined. Furthermore, this study demonstrated the effects of MCR on reactive oxygen species production in murine macrophages. Mori Cortex Radicis restored deoxyribonucleic acid damages at higher concentrations of the extracts and significantly suppressed free radicals and NO* production. In this study, MCR significantly restored inflammatory responses and intracellular antioxidant activities in murine macrophages (RAW 264.7), which anticipated that MCR could be used as a natural anti-inflammatory agent.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2096786
Author(s):  
Jieun Choi ◽  
Young Yun Jung ◽  
In Jin Ha ◽  
Seung Ho Baek ◽  
Zhiyun Zhang ◽  
...  

The in vitro anti-inflammatory and skin moisturizing activities of Pilea martini (Levl.) Hand.-Mazz. were investigated on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and human immortalized keratinocytes. Chromatographic analysis was performed to identify the chemical composition of the extracts. Pilea martini extracts significantly suppressed LPS-induced nitric oxide, prostaglandin E2, interleukin 6, and tumor necrosis factor α production in dose-dependent manners. In addition, the extracts inhibited LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 proteins and their mRNA expression through causing a downregulation of nuclear factor-κB, activator protein 1, and mitogen-activated protein kinase signaling cascades. The extracts increased the production of hyaluronic acid levels and enhanced the expression levels of both filaggrin and serine palmitoyltransferase regulation. Liquid chromatography-mass spectroscopy analysis showed that the extracts contained 6 different compounds (malic acid, tryptophan, chlorogenic acid, caffeic acid, p-coumaric acid, and isoquercetin) that may contribute to their bioactivities. Taken together, Pilea martini extract showed remarkable promise as an anti-inflammatory and moisturizing agent.


2010 ◽  
Vol 104 (4) ◽  
pp. 503-512 ◽  
Author(s):  
Antonio González-Sarrías ◽  
Mar Larrosa ◽  
Francisco Abraham Tomás-Barberán ◽  
Piero Dolara ◽  
Juan Carlos Espín

Previous studies have reported the anti-inflammatory properties of pomegranate extracts, suggesting that ellagitannins (ET) and ellagic acid (EA) are the main anti-inflammatory compounds. However, both ET and EA are metabolised in vivo by the gut microbiota to yield urolithins (Uro) which can be found in the gut and in systemic bloodstream. The present study was carried out to evaluate the individual effect of EA and their microbiota-derived metabolites Uro on colon fibroblasts upon IL-1β treatment as an in vitro inflammation model. Uro-A and Uro-B (10 μm) inhibited PGE2 production (85 and 40 %, respectively) after IL-1β stimulation, whereas EA did not show any effect. Uro-A, but not Uro-B, down-regulated cyclo-oxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) mRNA expression and protein levels. Both Uro inhibited NF-κB translocation to nucleus. Slight but significant effects were found in the activation of mitogen-activated protein kinase (MAPK) pathways. Uro-A lowered c-Jun N-terminal kinase phosphorylation state, and both Uro inhibited p38 activation. No metabolites derived from Uro or EA were found in the cell media upon incubation of EA or Uro with the cells, and only traces of the compounds were found inside the cells. The present results suggest that Uro, mainly Uro-A, are the main compounds that are responsible for the pomegranate anti-inflammatory properties. The mechanism of action implicated seems to be via the inhibition of activation of NF-κB and MAPK, down-regulation of COX-2 and mPGES-1 expressions, and consequently,via the reduction of PGE2 production. Taking into account that Uro did not enter the cells, a competitive binding for IL-1β membrane receptor cannot be discarded.


Sign in / Sign up

Export Citation Format

Share Document