scholarly journals Antioxidant Activity and Anti-Photoaging Effects on UVA-Irradiated Human Fibroblasts of Rosmarinic Acid Enriched Extract Prepared from Thunbergia laurifolia Leaves

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1648
Author(s):  
Thanawat Pattananandecha ◽  
Sutasinee Apichai ◽  
Jakaphun Julsrigival ◽  
Malyn Ungsurungsie ◽  
Suched Samuhasaneetoo ◽  
...  

The current study investigated the inhibiting effect on reactive oxygen species (ROS), reactive nitrogen species (RNS), and matrix metalloproteinase-1 (MMP-1) production in a cell-based study of standardized rosmarinic acid enriched extract (SRAEE) prepared from Thunbergia laurifolia leaves. HPLC chromatogram revealed that rosmarinic acid is a major component in prepared SRAEE, followed by caffeic acid. SRAEE exhibited antioxidant activity both in vitro and cell-based studies. SRAEE showed scavenging effects on nitric oxide and superoxide anion and inhibition effects on lipid peroxidation in vitro. SRAEE also inhibited ROS and MMP-1 production in normal human dermal fibroblast cells induced by H2O2 and UVA, respectively, without exerted cytotoxicity. Additionally, collagen degradation was protected by SRAEE induced by UVA. Nitric oxide and inducible nitric oxide synthase (iNOS) productions were also inhibited by SRAEE in RAW264.7 mouse macrophage cells induced by combined lipopolysaccharide (LPS)-interferon-γ (IFN-γ). The results indicated that SRAEE is a potential candidate as a natural pharmaceutical active ingredient for cosmeceutical product application.

2020 ◽  
Vol 16 ◽  
Author(s):  
Maibam Beebina Chanu ◽  
Biseshwori Thongam ◽  
Khumukcham Nongalleima ◽  
Hans Raj Bhat ◽  
Surajit Kumar Ghosh ◽  
...  

Background: Quercus serrata Murray leaves have been used traditionally in the treatment of diabetes, dysmenorrhoea, inflammation and urinary tract infection. So, far no study had been reported on the toxicological profile and antioxidant properties of the plant. Objective: The present study was aimed to investigate the in-vivo toxicological profile and in-vitro antioxidant activities of the methanolic extract of standardized Quercus serrata leaves. Methods: Per-oral sub-acute toxicity study was performed in rats using three dose levels (200, 400 and 800 mg/kg b.w.) of the extract for 28-days. Control group received gum acacia suspended in water. Bodyweight was measured weekly. Biochemical parameters were analysed using the serum, the blood-cell count was done using whole blood. Pathological changes were also checked in highly perfused tissues. Further, in-vitro reducing power assay, nitric oxide scavenging assay, DPPH free-radical scavenging assay were performed to check the antioxidant activity of the extract. Results: There were no significant alterations in the blood-cell count and biochemical parameters analysed in the treatment group when compared with the normal control. Histopathology study of liver, kidney, pancreas, heart and brain revealed normal cellular architecture in the treatment groups alike the control group animals. Quercus serrata also showed a significant reduction of DPPH with IC50 4.48±0.254 µg/mL, in-vitro reducing power activity with IC50121.65±0.320 µg/mL and nitric oxide scavenging activity IC50 106.43±0.338 µg/mL. Conclusion: The above study showed that standardized methanolic extract of Quercus serrata leaves was safe after subacute oral administration in rats and has good antioxidant potential.


2020 ◽  
Vol 21 (13) ◽  
pp. 4619
Author(s):  
Yuling Ding ◽  
Chanipa Jiratchayamaethasakul ◽  
Seung-Hong Lee

Ultraviolet radiation (UV) is a major causative factor of DNA damage, inflammatory responses, reactive oxygen species (ROS) generation and a turnover of various cutaneous lesions resulting in skin photoaging. The purpose of this study is to investigate the protective effect of protocatechuic aldehyde (PA), which is a nature-derived compound, against UVA-induced photoaging by using human dermal fibroblast (HDF) cells. In this study, our results indicated that PA significantly reduced the levels of intracellular ROS, nitric oxide (NO), and prostaglandins-E2 (PGE2) in UVA-irradiated HDF cells. It also inhibited the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Besides, PA significantly suppressed the expression of matrix metalloproteinases-1 (MMP-1) and pro-inflammatory cytokines and promoted collagen synthesis in the UVA-irradiated HDF cells. These events occurred through the regulation of activator protein 1 (AP-1), nuclear factor-κB (NF-κB), and p38 signaling pathways in UVA-irradiated HDF cells. Our findings suggest that PA enhances the protective effect of UVA-irradiated photoaging, which is associated with ROS scavenging, anti-wrinkle, and anti-inflammatory activities. Therefore, PA can be a potential candidate for the provision of a protective effect against UVA-stimulated photoaging in the pharmaceutical and cosmeceutical industries.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4859 ◽  
Author(s):  
Saher Nazir ◽  
Hasnain Jan ◽  
Duangjai Tungmunnithum ◽  
Samantha Drouet ◽  
Muhammad Zia ◽  
...  

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


2014 ◽  
Vol 7 (1) ◽  
pp. 1-5
Author(s):  
Dani Fadel ◽  
Spiridon Kintzios ◽  
Athanasios S. Economou ◽  
Georgia Moschopoulou ◽  
Helen – Isis A. Constantinidou

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9769
Author(s):  
Hala I. Al-Jaber ◽  
Ashok K. Shakya ◽  
Zaha A. Elagbar

Background Salvia eigii., Salvia hierosolymitana and Salvia viridis are native to the Mediterranean region, and are used in traditional medicine for the treatment of many ailments. In the current investigation, the methanolic extracts obtained from the air dried aerial parts of S. eigii, S. hierosolymitana and S. viridis from Jordan were screened for their total phenolics content (TPC), total flavonoids content (TFC) and their in vitro antioxidant activity. Additionally, the presence of four bioactive phenolic acids including gallic acid, caffeic acid, rosmarinic acid and salvianolic acid B and other seven flavonoids including luteolin-7-O-glucoside, apigenin, apigenin-7-O-glucoside, rutin, nariginin, hesperidin and quercetin was determined using Liquid chromatography-Electron Spray Ionization-Tandom Mass Spectrometry (LC-ESI-MS/MS). Methods Antioxidant activity of the obtained three extracts were examined via the DPPH•, ABTS• + radical scavenging methods in addition to Ferrous Ion Chelating (FIC) effect. TFC and TPC of the extracts were measured using the aluminum chloride colorimetric method and the Folin-Ciocalteau method, respectively. The presence and concentration of the selected 11 compounds was further determined through LC-ESI-MS/MS. Results The results indicated that three Salvia species had high total flavonoids content expressed in mg quercetin/g dry extract (S. heirosolymitana: 770.85 ±  5.26; S. eigii: 520.60 ±  6.24, S. viridis: 311.36 ±  4.41). S. heirosolymitana had the highest DPPH• activity (0.184 ±  1.22 × 10−2 mg/ml) and FIC effect (0.354 ±  0.018 mg/ml). S. heirosolymitana had slightly higher ABTS• + scavenging activity than S. eigii (0.176 ±  1.16 × 10−2 mg/ml; 0.183 ±  0.031 mg/ml, respectively). All 11 compounds were detected in the extracts of the three Salvia species. Luteolin-7-O-glucoside was detected in high concentration levels in the three species (1756.73, 21651.36, and 26125.14 mg/kg dry plant; S. eigii, S. hierosolyimitana and S. viridis, respectively), yet rosmarinic acid had the highest contribution to both S. hierosolymitana (27124.93 mg/kg) and S. eigii (15783.33 mg/kg). Notably, S. hierosolymitana and S. viridis contained salvianolic acid B (896.11; 890.9 mg/kg). Conclusions The three Salvia species exhibited good antioxidant activity, especially S. heirosolymitana due to its high TPC, TFC, and the presence of high concentration levels of romarinic acid and other phenolic acids and flavonoids. This is the first phytochemical and antioxidant evaluation of S. eigii, S. hierosolymitana and S. viridis from Jordan. Prior to this investigation, no phytochemical investigation on S. eigii was reported.


2020 ◽  
Vol 11 (2) ◽  
pp. 1545-1550
Author(s):  
Mythri M ◽  
Sanal Dev K T ◽  
Kottai Muthu A

Cassia absus (Linn)Cassia absus(Linn) (family Fabaceae ) is generally known as “chaksu ” inan ayurvedic traditional system.The current study,aerial parts of different concentrates(Pet.ether, ethyl acetate and methanol) of Cassia absus, was evaluated for its in-vitro antioxidant potential byDiphenylpicrylhydrazyl radical,nitric oxide activity andtotal antioxidant activitytaking ascorbate as the standardfor all the three methods. The IC50 value was originated that methanolic concentrates of Cassia absusmore efficient inDiphenylpicrylhydrazyl radical,nitric oxide activity, total antioxidant activitycompared EA&PEconcentrates.The methanolic concentrates of Cassia absus& ascorbic acid exhibited antioxidant potential possessing IC50230µg/ml &130µg/ml (Nitric oxide). 205µg/ml &57µg/ml (total antioxidant),195µg/ml & 66µg/ml (Diphenylpicrylhydrazyl radical)respectively. The difference in the scavenging potential of the extracts can be due to variation in the percentage of bioactive compounds present in different solvents. Invitroantioxidant studiesobviouslyshow the methanolic concentrates of Cassia absushave better antioxidant activity. This result indicates that aerial parts of methanolic concentratesCassia absuscould serve as a natural antioxidant, which may be useful in preventfree radical-induced diseases.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 142 ◽  
Author(s):  
Seong Moon ◽  
Hye Lee ◽  
Ramya Mathiyalagan ◽  
Yu Kim ◽  
Dong Yang ◽  
...  

Ginsenosides from Panax ginseng (Korean ginseng) are unique triterpenoidal saponins that are considered to be responsible for most of the pharmacological activities of P. ginseng. However, the various linkage positions cause different pharmacological activities. In this context, we aimed to synthesize new derivatives of ginsenosides with unusual linkages that show enhanced pharmacological activities. Novel α-glycosylated derivatives of ginsenoside F1 were synthesized from transglycosylation reactions of dextrin (sugar donor) and ginsenoside F1 (acceptor) by the successive actions of Toruzyme®3.0L, a cyclodextrin glucanotransferase. One of the resultant products was isolated and identified as (20S)-3β,6α,12β-trihydroxydammar-24ene-(20-O-β-D-glucopyranosyl-(1→2)-α-D-glucopyranoside) by various spectroscopic characterization techniques of fast atom bombardment-mass spectrometry (FAB-MS), infrared spectroscopy (IR), proton-nuclear magnetic resonance (1H-NMR), 13C-NMR, gradient heteronuclear single quantum coherence (gHSQC), and gradient heteronuclear multiple bond coherence (gHMBC). As expected, the novel α-glycosylated ginsenoside F1 (G1-F1) exhibited increased solubility, lower cytotoxicity toward human dermal fibroblast cells (HDF), and higher tyrosinase activity and ultraviolet A (UVA)-induced inhibitory activity against matrix metalloproteinase-1 (MMP-1) than ginsenoside F1. Since F1 has been reported as an antiaging and antioxidant agent, the enhanced efficacies of the novel α-glycosylated ginsenoside F1 suggest that it might be useful in cosmetic applications after screening.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 610 ◽  
Author(s):  
Alexey V. Ermakov ◽  
Roman A. Verkhovskii ◽  
Irina V. Babushkina ◽  
Daria B. Trushina ◽  
Olga A. Inozemtseva ◽  
...  

Microencapsulation and targeted delivery of cytotoxic and antibacterial agents of photodynamic therapy (PDT) improve the treatment outcomes for infectious diseases and cancer. In many cases, the loss of activity, poor encapsulation efficiency, and inadequate drug dosing hamper the success of this strategy. Therefore, the development of novel and reliable microencapsulated drug formulations granting high efficacy is of paramount importance. Here we report the in vitro delivery of a water-soluble cationic PDT drug, zinc phthalocyanine choline derivative (Cholosens), by biodegradable microcapsules assembled from dextran sulfate (DS) and poly-l-arginine (PArg). A photosensitizer was loaded in pre-formed [DS/PArg]4 hollow microcapsules with or without exposure to heat. Loading efficacy and drug release were quantitatively studied depending on the capsule concentration to emphasize the interactions between the DS/PArg multilayer network and Cholosens. The loading data were used to determine the dosage for heated and intact capsules to measure their PDT activity in vitro. The capsules were tested using human cervical adenocarcinoma (HeLa) and normal human dermal fibroblast (NHDF) cell lines, and two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Our results provide compelling evidence that encapsulated forms of Cholosens are efficient as PDT drugs for both eukaryotic cells and bacteria at specified capsule-to-cell ratios.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Renuka Diwan ◽  
Amit Shinde ◽  
Nutan Malpathak

Ruta graveolens L. is a medicinal plant used in traditional systems of medicine for treatment of psoriasis, vitiligo, leucoderma, and lymphomas with well-known anti-inflammatory and anticancer properties. Therefore antioxidant potential of R. graveolens (in planta and in vitro) was investigated. As antioxidants present in plant extracts are multifunctional, their activity and mechanism depends on the composition and conditions of the test system. Therefore, the total antioxidant capacity was evaluated using assays that detect different antioxidants: free radical scavenging (DPPH and ABTS), transition metal ion reduction (phosphomolybdenum assay), reducing power, and nitric oxide reduction. Content of furanocoumarin-bergapten in the extracts showed good corelation with free radical scavenging, transition metal reduction and reducing power, while total phenolic content showed good corelation with nitric oxide reduction potential. Antioxidant activity of in vitro cultures was significantly higher compared to in vivo plant material. The present study is the first report on comprehensive study of antioxidant activity of R. graveolens and its in vitro cultures.


Sign in / Sign up

Export Citation Format

Share Document