scholarly journals The Response of Iranian Melon (Cucumis melo L.) Accessions to 2,4-D Drift

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2442
Author(s):  
Rouzbeh Zangoueinejad ◽  
Behnaz Sirooeinejad ◽  
Mohammad Taghi Alebrahim ◽  
Ali Ahsan Bajwa

One of the most widely used auxinic herbicides in southern Iran’s cereal crop fields is 2,4-D; however, the concurrent growing season of off-season melons in this region potentially leads to herbicide drift from cereal fields to the melon fields. To study the response of some Iranian wild melon accessions to three simulated drift rates of 2,4-D, including 112.1, 11.2, and 3.7 g ae ha−1, a field experiment was conducted during 2019 and 2020 growing seasons. It was found that by increasing the herbicide rate from 3.7 to 112.1 g ae ha−1, the level of visual injury increased in all accessions. However, significant variation in herbicide tolerance was observed among different melon accessions. The MEL-R1 was the most tolerant accession with only 20% injury, while MEL-D8 displayed very high injury rate (ca. 90%) as assessed at 6 weeks after treatment during 2019. The accession MEL-S3 was the most tolerant to 2,4-D drift rates (20% injury) at 6 weeks after treatment during 2020. There was no significant difference between the accessions MEL-R1 and MEL-S3 in terms of their response to 2,4-D treatment during both years of the study, as these accessions fully recovered from injury over 6 weeks after herbicide treatment. In addition, only these two accessions were able to produce yield after the application of 2,4-D at the highest rate tested (112.1 g ae ha−1). Therefore, the melon accessions MEL-R1 and MEL-S3 could be recommended for cultivation and even for breeding programs in order to develop 2,4-D-tolerant commercial cultivars in regions where this herbicide is commonly used in cereal crop production adjacent to the melon fields.

Author(s):  
Gerhard Rossouw ◽  
Suzy Rogiers ◽  
Bruno Holzapfel ◽  
Leigh Schmidtke

Auxin-type herbicides are widely used to control broad-leafed weeds in cereal crop fields and pastures. Vapour drift, however, can spread several kilometres and therefore reach nearby vineyards. When grapevines are exposed to these chemicals, the active constituents induce phytotoxic effects including injury to foliage and impairment of reproductive development. The aim of this article is to outline the key potential implications of auxin-type herbicide drift exposure on leaf functioning and grapevine reproductive performance.


Author(s):  
A. Ngie ◽  
S. Tesfamichael ◽  
F. Ahmed

There is continuous challenge in crop monitoring from erratic climatic phenomena such as irregular rainfall episodes during required farming seasons or cloud cover. Remote sensing has offered vital support in the monitoring of such scenarios and informs relevant authorities for better decision making. While optical sensors measure the greenness of vegetation to enable monitoring of its status, their usage is constrained by the continuous cloud cover during crop growth seasons in sub Saharan Africa. Synthetic aperture radar data (SAR) are on the other hand capable of penetrating clouds and are sensitive to the structure and moisture content of target features, thereby providing complementary information for monitoring crop cultivated fields. This study sought to evaluate the sensitivity of Sentinel-1 SAR data to the status of cultivated crop fields that experienced varying rainfall amounts between 2015/2016 and 2016/2017 growing seasons as a result of El Niño induced drought in 2015. Dual polarization composites per season were classified and through sample farms delineated from Google Earth image, backscatter values were extracted for statistical comparisons. The two sample t-test was applied to test significance of the differences between the two seasons at the level of farm status. Results showed an overall significant difference (p-value of 0.003&amp;thinsp;<&amp;thinsp;0.005) in SAR backscatter sensitivity to cultivated crop fields during and after the El Niño phenomenon. While these results are encouraging for areas that experience clouds during growing seasons, further improvements can be expected by factoring in other variables such as topographic and moisture conditions of farms.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


2011 ◽  
Vol 11 ◽  
pp. 2330-2338 ◽  
Author(s):  
Stephen Chan Teck Leong ◽  
Roland Jui Heng Kueh

Seasonal population of the fruit-piercing mothsEudocimaspp. was monitored throughout the citrus growing seasons in a citrus orchard and in site adjacent to secondary forest from July 2007 to June 2009. The moth was detected practically throughout the year with activity lowest during the wet months (September-February) when fruits are still available and while highest during the dry months (May-June) which also coincided with the main fruiting season. The effects of annC24 horticultural mineral oil (HMO) on the citrus fruit damage caused by fruit-piecing moths was also determined. The percent fruit damage was significantly lowest (P≤0.05) in HMO-treated plots (8.4), followed by Dimethoate-treated plots (11.6) and untreated plots (22.5). However, there was no significant difference between HMO and Dimethoate treated plots indicating HMO is effective in reducing percent fruit damage.


2012 ◽  
Vol 27 (2) ◽  
pp. 117-129 ◽  
Author(s):  
Farag Mahmoud

A survey of insects associated with sesame, Sesamun indicum L. (Pedaliaceae) was conducted at the Agriculture Research Farm of The Faculty of Agriculture, University of Suez Canal during the growing seasons 2010 and 2011. All different insect species found on the experimental site were collected for identification. Sampling was done once a week and three times a day. Three methods were used to collect insects from the sesame plants (a sweep net, pitfall traps, digital camera and eye observation). A total of 31 insect species were collected and properly identified during the survey. Insects recorded on the plants were divided into four groups, true pollinators (Hymenoptera), other pollinators (Diptera, Coleoptera and Lepidoptera), pests (Orthoptera, Odonata, Hemiptera and Homoptera) and natural enemies (Coleoptera, Hymenoptera, Neuroptera and Dictyoptera). For studying the impact of insect pollination on sesame production, the experiment was divided in two: opened and non-opened pollination of sesame. 50 plants from nonopened pollination were covered with a perforated paper bag to allow the air to pass through and to prevent insects from approaching the plants. Quantitative and qualitative parameters were measured as follows: pod weight, number of seeds in each pod, weight of 1000 seeds, germination (%), seedlings vigour and oil content (%). Results clearly demonstrate that the opened pollination improved the crop production.


Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Todd Baughman

Aims: To determine peanut response and weed control following the use of carfentrazone plus pyroxasulfone (C + P). Study Design:  Randomized complete block design with 3-4 reps depending on location. Place and Duration of Study: Studies were conducted during the 2015 and 2016 growing seasons in south Texas near Yoakum (29.276o N, 97.123o W), the High Plains of Texas near Lamesa (32.769o N, 101.977o W) or Brownfield (33.104o N, 102.161o W), and southwestern Oklahoma near Ft. Cobb (35.091o N, 98.275o W). Methodology: Plots were infested with naturally occurring weed populations. Pendimethalin was applied either preplant incorporated (PPI) or preemergence (PRE). Early postemergence (EPOST) applications varied according to weather conditions and peanut growth at each location. Postemergence (POST) treatments were applied 26 to 58 days after planting. Weed control and peanut stunting were visually estimated on a scale of 0 to 100 (0 indicating no control or plant death and 100 indicating complete control or plant death). Results: Peanut stunting with C + P was only noted at the High Plains and Oklahoma locations in 2015 but not 2016. Urochloa texana (Buckl.) control with C + P (PRE) varied from 75 to 93%. POST applications provided inconsistent control.  Amaranthus palmeri S. Wats. control with C + P (PRE) was at least 78% season-long while POST applications were inconsistent (24 to 100%).  Pendimethalin plus C + P controlled Cucumis melo L. var. Dudaim Naud. at least 80% late-season. Ipomoea hederacea Jacq. control was excellent season-long (> 80%) in 2015 but poor (< 60%) in 2016.  Reduced peanut yields were noted with C + P in Oklahoma in 2015 to excessive season-long injury.    Conclusion: The premix of C + P has potential for use in peanut especially for control of many small-seeded annual broadleaf weeds that continue to plague many peanut growers across the southwest.  For effective broad-spectrum annual weed control season-long, the addition of pendimethalin to PRE applications will be required.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Dalma Nagy-Réder ◽  
Zsófia Birinyi ◽  
Marianna Rakszegi ◽  
Ferenc Békés ◽  
Gyöngyvér Gell

Global climate change in recent years has resulted in extreme heat and drought events that significantly influence crop production and endanger food security. Such abiotic stress during the growing season has a negative effect on yield as well as on the functional properties of wheat grain protein content and composition. This reduces the value of grain, as these factors significantly reduce end-use quality. In this study, four Hungarian bread wheat cultivars (Triticum aestivum ssp. aestivum) with different drought and heat tolerance were examined. Changes in the size- and hydrophobicity-based distribution of the total proteins of the samples have been monitored by SE- and RP-HPLC, respectively, together with parallel investigations of changes in the amounts of the R5 and G12 antibodies related to celiac disease immunoreactive peptides. Significant difference in yield, protein content and composition have been observed in each cultivar, altering the amounts of CD-related gliadin, as well as the protein parameters directly related to techno-functional properties (Glu/Gli ratio, UPP%). The extent of changes largely depended on the timing of the abiotic stress. The severity of the negative effect depended on the growth stage in which abiotic stress occurred.


2012 ◽  
pp. 89-93
Author(s):  
Tamás Árendás ◽  
Zoltán Berzsenyi ◽  
Péter Bónis

The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties. The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed. In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance.  In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half,  while no  significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. 


Sign in / Sign up

Export Citation Format

Share Document