scholarly journals Kosteletzkya pentacarpos: A Potential Halophyte Candidate for Phytoremediation in the Meta(loid)s Polluted Saline Soils

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2495
Author(s):  
Mingxi Zhou ◽  
Stanley Lutts ◽  
Ruiming Han

Kosteletzkya pentacarpos (L.) Ledebour is a perennial facultative halophyte species from the Malvacea family that grows in coastal areas with high amounts of salt. The tolerance of K. pentacarpos to the high concentration of salt (0.5–1.5% salinity range of coastal saline land) has been widely studied for decades. Nowadays, with the dramatic development of the economy and urbanization, in addition to the salt, the accumulation of mate(loid)s in coastal soil is increasing, which is threatening the survival of halophyte species as well as the balance of wetland ecosystems. Recently, the capacity of K. pentacarpos to cope with either single heavy metal stress or a combination of multiple meta(loid) toxicities was studied. Hence, this review focused on summarizing the physiological and biochemical behaviors of K. pentacarpos that has been simultaneously exposed to the combination of several meta(loid) toxicities. How the salt accumulated by K. pentacarpos impacts the response to meta(loid) stress was discussed. We conclude that as a potential candidate for phytoremediation, K. pentacarpos was able to cope with various environmental constrains such as multiple meta(loid) stresses due to its relative tolerance to meta(loid) toxicity.

Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokas ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water, which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes (P less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportion in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qianqian Sheng ◽  
Min Song ◽  
Zunling Zhu ◽  
Fuliang Cao

AbstractCarpinus betulus and Carpinus putoensis are precious species in the world. Studies on the ecosystem function of the two species are rare. This study investigated the physiological and biochemical responses of C. betulus and C. putoensis to NO2 stress and their natural recovery. C. betulus and C. putoensis seedlings underwent fumigation with 12.0 mg/m3 NO2 for 0, 1, 6, 12, 24, 48, and 72 h, respectively. Then, the plants were allowed to recover at room temperature for 30 d. Physiological and biochemical changes in the leaves were compared between the two species. In terms of peroxidase (POD) activity, the damage response of C. betulus under NO2 stress appeared later than that of C. putoensis. The soluble protein content of C. betulus was noticeably higher than that of C. putoensis, and C. betulus exhibited more stable membrane lipoperoxidation. The tendency of the changes in nitrate reductase of C. betulus was less noticeable than that of C. putoensis. The variation amplitudes of N, K, Mg, Zn and Mn in the leaves of C. putoensis were greater than those of C. betulus. C. putoensis showed more sensitive metabolisms in response to NO2 stress compared with C. betulus. High-concentration NO2 caused damage to C. betulus and C. putoensis was reversible, and both species returned to normal growth via their own metabolism after 30-d recovery. The results of this study may provide useful reference data for quantitative assessment of the ecosystem function of C. betulus and C. putoensis and for their scientific application in urban greening.


2019 ◽  
Vol 46 (3) ◽  
pp. 197 ◽  
Author(s):  
Xiaxia Yu ◽  
Wenjin Zhang ◽  
Yu Zhang ◽  
Xiaojia Zhang ◽  
Duoyong Lang ◽  
...  

Plants are constantly exposed to various stresses, which can degrade their health. The stresses can be alleviated by the application of methyl jasmonate (MeJA), which is a hormone involved in plant signalling. MeJA induces synthesis of defensive compounds and initiates the expression of pathogenesis-related genes involved in systemic acquired resistance and local resistance. Thus, MeJA may be used against pathogens, salt stress, drought stress, low temperature, heavy metal stress and toxicities of other elements. The application of MeJA improves growth, induces the accumulation of active compounds, and affects endogenous hormones levels, and other physiological and biochemical characteristics in stressed plants. Furthermore, MeJA antagonises the adverse effects of osmotic stress by regulating inorganic penetrating ions or organic penetrants to suppress the absorption of toxic ions. MeJA also mitigates oxidative stress by activating antioxidant systems to scavenge reactive oxygen species (ROS) in stressed plants. For these reasons, we reviewed the use of exogenous MeJA in alleviating biotic (pathogens and insects) and abiotic stresses in plants.


Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokaz ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water , which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes(p less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportions in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


2015 ◽  
Vol 6 (2) ◽  
pp. 91 ◽  
Author(s):  
Fazal Hadi ◽  
Tariq Aziz

Contamination of soil by various heavy metals is increasing day by day by different activities, such as industrialization and urbanization. Lead (Pb) is one of the potential heavy metal that is neither essential element nor has any role in the process of cell metabolism but it is easily absorbed and accumulated in different parts of a plant. The Pb uptake is mainly regulated by PH, particle size, and cation exchange capacity of the soil, root exudation and by different other physical and chemical parameters. The high concentration of Pb can cause a number of toxic symptoms in plants that may be retardation in growth (Stunted growth), negative affect on photosynthesis (chlorosis), blackening of roots and different other symptoms. Lead (Pb) has the ability to inhibit photosynthesis, disturb mineral nutrition and water balance, changes hormonal status and affects membrane structure and permeability. This review describes different morphological, physiological and biochemical effects of Lead (Pb) toxicity in plants.


2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1985999 ◽  
Author(s):  
Takayoshi Yamaguchi

Nootkatone is one of the sesquiterpenes contained in citrus peels, especially in grapefruits. It is known that nootkatone has various physiological activities such as antioxidative and antifibrotic actions. This study showed that nootkatone, a natural sesquiterpene, exhibited antibacterial activities against Gram-positive bacteria such as Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, Corynebacterium diphtheriae, and Bacillus cereus, with the antibacterial effect against C. diphtheriae being most pronounced. However, no growth-inhibitory effects or bactericidal activity was observed against Gram-negative bacteria. In addition, the bactericidal activity of nootkatone at a high concentration was observed against Gram-positive bacilli. These results suggested that nootkatone may exert an antibacterial effect by targeting cell wall structures or a particular metabolite. Moreover, even at a low concentration (0.25 mM), nootkatone was capable of inhibiting biofilm formation by Staphylococcus aureus. Thus, this study demonstrated antibacterial efficacy for nootkatone against Gram-positive bacteria, indicating that nootkatone could be a potential candidate for the development of new antibacterial agents.


2013 ◽  
Vol 634-638 ◽  
pp. 1253-1258 ◽  
Author(s):  
Fang Qian ◽  
Shu Juan Jiang ◽  
Tao Liu ◽  
Guang Qing Mu

Lactase from the thermophilic bacteria has the good characteristics of heat-stability, high production and low pollution, and can effectively solve people’s problem of “lactose intolerance”. In the present work, a thermostable lactase-producing strain was isolated from the fermenting sample in fermenting tank of a spice factory in Chinese city of Dalian. Base on morphological observation, physiological and biochemical tests and molecular identification, the thermostable lactase-producing strain T242 was identified as Bacillus coagulans. Moreover, investigation revealed that lactase from Bacillus coagulans T242 is an intracellular lactase hydrolyzing lactose into glucose and galactose inside of the bacterial cell, and the optimum approach for releasing lactase was the treatment with lysozyme followed by high concentration of NaCl.


2010 ◽  
Vol 78 (4) ◽  
pp. 1797-1806 ◽  
Author(s):  
Courtney E. Noah ◽  
Meenakshi Malik ◽  
DeAnna C. Bublitz ◽  
Devin Camenares ◽  
Timothy J. Sellati ◽  
...  

ABSTRACT Francisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 μg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 μg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 μg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium.


Phenolic compounds are listed under priority pollutants by US EPA, and their concentration in effluent of coke oven industries reached to 1000 mg l-1 . However, investigation on biodegradation of phenolics from coke oven wastewater is found to be scanty. Therefore, an indigenous pseudomonas species with high toxicity tolerance and phenolic degradation abilities has been isolated from coke oven wastewater. In order to enhance the efficiency of phenol and to the study the interaction effect exists among them the significant media components are optimized employing response surface methodology (RSM) and central composite design (CCD RSM. Result reveals that MgSO4 plays considerable influence on biodegradation of phenol degradation by the indigenous pseudomonas species. Further, among the three independent variables, interaction effect between MgSO4 and FeCl3 found to be significant on degradation of phenol. The optimum values of the media constituents are as follows: 0.094 mgl-1 of NaCl, 0.019 mgl-1 FeCl3 and 0.1681 mgl-1 of MgSO4. Almost completely biodegradation of phenol is achieved at 900 mgl-1 of phenol within a short time period of 24h. Further, at this optimized culture condition almost completely degradation of phenol was achieved even at a very high initial concentration of 1500 mgl-1 within a shorter time period of 95h. Thus, indigenous Pseudomonas species found to be a potential candidate for degradation of high concentration of phenol from of coke oven wastewater


Sign in / Sign up

Export Citation Format

Share Document