scholarly journals Improving the Health-Benefits of Kales (Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2629
Author(s):  
Erika Ortega-Hernández ◽  
Marilena Antunes-Ricardo ◽  
Daniel A. Jacobo-Velázquez

Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 946 ◽  
Author(s):  
Thanh Ninh Le ◽  
Chiu-Hsia Chiu ◽  
Pao-Chuan Hsieh

Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.


2019 ◽  
Vol 56 (10) ◽  
pp. 4696-4704 ◽  
Author(s):  
Jia Lun Liang ◽  
Chean Chean Yeow ◽  
Kah Cheng Teo ◽  
Charles Gnanaraj ◽  
Ying Ping Chang

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761
Author(s):  
Eliana B. Souto ◽  
Alessandra Durazzo ◽  
Amirhossein Nazhand ◽  
Massimo Lucarini ◽  
Massimo Zaccardelli ◽  
...  

Medicinal plants are used worldwide due to their lower risk of side effects and eco-friendly, cost-effective production when compared to chemical drugs, encouraging researchers to further exploit the therapeutic potential of the former. One of the most popular medicinal plants is Vitex agnus-castus L., grown in tropical and sub-tropical regions, to which different health benefits have already been attributed. In this perspective article, the in vitro and in vivo therapeutic properties of V. agnus-castus L. have been analyzed and reviewed with a special focus on its health-promoting effects and potential nutraceutical applications.


2014 ◽  
Vol 42 (01) ◽  
pp. 189-206 ◽  
Author(s):  
Mohammed S. Al-Dosari

The widely used culinary vegetable, red cabbage (Brassica oleracea L. Var. capitata f. rubra), of the Brassicaceae family contains biologically potent anthocyanins and a myriad of antioxidants. Previous studies have shown that the pharmacological effects of red cabbage in vivo are redox-sensitive. The present study explored whether red cabbage modulates various histopathological and biochemical parameters in rats administered with a cholesterol-rich diet (CRD). To this end, prolonged administration of a lyophilized-aqueous extract of red cabbage (250 and 500 mg/kg body weight) significantly blunted the imbalances in lipids, liver enzymes and renal osmolytes induced by the CRD. The effects of red cabbage were compared to simvastatin (30 mg/kg body weight) treated rats. Estimation of malondialdehyde and non-protein sulfhydryls revealed robust antioxidant properties of red cabbage. Histopathological analysis of livers from rats administered with red cabbage showed marked inhibition in inflammatory and necrotic changes triggered by CRD. Similarly, in vitro studies using a 2′,7′-Dichlorofluorescein-based assay showed that red cabbage conferred cytoprotective effects in cultured HepG2 cells. In conclusion, the present study discloses the potential therapeutic effects of red cabbage in dyslipidemia as well as hepatic injury, that is at least, partly mediated by its antioxidant properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hélène Letscher ◽  
Viviane A. Agbogan ◽  
Sarantis Korniotis ◽  
Pauline Gastineau ◽  
Emmanuel Tejerina ◽  
...  

AbstractEarly innate education of hematopoietic progenitors within the bone marrow (BM) stably primes them for either trained immunity or instead immunoregulatory functions. We herein demonstrate that in vivo or in vitro activation within the BM via Toll-like receptor-9 generates a population of plasmacytoid dendritic cell (pDC) precursors (CpG-pre-pDCs) that, unlike pDC precursors isolated from PBS-incubated BM (PBS-pre-pDCs), are endowed with the capacity to halt progression of ongoing experimental autoimmune encephalomyelitis. CpG activation enhances the selective migration of pDC precursors to the inflamed spinal cord, induces their immediate production of TGF-β, and after migration, of enhanced levels of IL-27. CpG-pre-pDC derived TGF-β and IL-27 ensure protection at early and late phases of the disease, respectively. Spinal cords of CpG-pre-pDC-protected recipient mice display enhanced percentages of host-derived pDCs expressing TGF-β as well as an accumulation of IL-10 producing B cells and of CD11c+ CD11b+ dendritic cells. These results reveal that pDC precursors are conferred stable therapeutic properties by early innate activation within the BM. They further extend to the pDC lineage promising perspectives for cell therapy of autoimmune diseases with innate activated hematopoietic precursor cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


2013 ◽  
Vol 168 (6) ◽  
pp. R85-R93 ◽  
Author(s):  
Felix Beuschlein

Arterial hypertension is a major cardiovascular risk factor that affects between 10 and 40% of the population in industrialized countries. Primary aldosteronism (PA) is the most common form of secondary hypertension with an estimated prevalence of around 10% in referral centers and 4% in a primary care setting. Despite its high prevalence until recently, the underlying genetic and molecular basis of this common disease had remained largely obscure. Over the past decade, a number of insights have been achieved that have relied onin vitrocellular systems, wild-type and genetically modifiedin vivomodels, as well as clinical studies in well-characterized patient populations. This progress has been made possible by a number of independent technical developments including that of specific hormone assays that allow measurement in small sample volumes as well as genetic techniques that enable high-throughput sequencing of a large number of samples. Furthermore, animal models have provided important insights into the physiology of aldosterone regulation that have served as a starting point for investigation of mechanisms involved in autonomous aldosterone secretion. Finally, national and international networks that have built up registries and biobanks have been instrumental in fostering translational research endeavors in PA. Therefore, it is to be expected that in the near future, further pathophysiological mechanisms that result in autonomous aldosterone secretion will be unraveled.


1993 ◽  
Vol 47 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Stephane Mottin ◽  
Canh Tran-Minh ◽  
Pierre Laporte ◽  
Raymond Cespuglio ◽  
Michel Jouvet

At pH 7 and with the excitation at wavelengths above 315 nm, previously unreported fluorescence of 5-HT (5-hydroxytryptamine) is observed. Two fluorescence bands were observed for 5-HT; the first emits at around 390 nm with an associated lifetime near 1 ns, and the other (well known) emits at 340 nm with an associated lifetime of 2.7 ns. With both static and time-resolved fluorescences, the spectral and temporal effects of the excitation wavelength were studied between 285 and 340 nm. With these basic spectroscopic properties as a starting point, a fiber-optic chemical sensor (FOCS) was developed in order to measure 5-HT with a single-fiber configuration, nitrogen laser excitation, and fast digitizing techniques. Temporal effects including fluorescence of the optical fiber were studied and compared with measurements both directly in cuvette and through the fiber-optic sensor. Less than thirty seconds are required for each measurement. A detection limit of 5-HT is reached in the range of 5 μM. Our system, with an improved sensitivity, could therefore be a possible and convenient “tool” for in vivo determination of 5-HT.


2021 ◽  
Author(s):  
Scott B Biering ◽  
Francielle Tramontini Gomes de Sousa ◽  
Laurentia V. Tjang ◽  
Felix Pahmeier ◽  
Richard Ruan ◽  
...  

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Our findings suggest that S interactions with barrier cells are a contributing factor to COVID-19 disease severity and offer mechanistic insight into SARS-CoV-2 triggered vascular leak, providing a starting point for development of therapies targeting COVID-19 pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document