Red Cabbage (Brassica oleracea L.) Mediates Redox-Sensitive Amelioration of Dyslipidemia and Hepatic Injury Induced by Exogenous Cholesterol Administration

2014 ◽  
Vol 42 (01) ◽  
pp. 189-206 ◽  
Author(s):  
Mohammed S. Al-Dosari

The widely used culinary vegetable, red cabbage (Brassica oleracea L. Var. capitata f. rubra), of the Brassicaceae family contains biologically potent anthocyanins and a myriad of antioxidants. Previous studies have shown that the pharmacological effects of red cabbage in vivo are redox-sensitive. The present study explored whether red cabbage modulates various histopathological and biochemical parameters in rats administered with a cholesterol-rich diet (CRD). To this end, prolonged administration of a lyophilized-aqueous extract of red cabbage (250 and 500 mg/kg body weight) significantly blunted the imbalances in lipids, liver enzymes and renal osmolytes induced by the CRD. The effects of red cabbage were compared to simvastatin (30 mg/kg body weight) treated rats. Estimation of malondialdehyde and non-protein sulfhydryls revealed robust antioxidant properties of red cabbage. Histopathological analysis of livers from rats administered with red cabbage showed marked inhibition in inflammatory and necrotic changes triggered by CRD. Similarly, in vitro studies using a 2′,7′-Dichlorofluorescein-based assay showed that red cabbage conferred cytoprotective effects in cultured HepG2 cells. In conclusion, the present study discloses the potential therapeutic effects of red cabbage in dyslipidemia as well as hepatic injury, that is at least, partly mediated by its antioxidant properties.

2021 ◽  
Vol 23 (1) ◽  
pp. 126
Author(s):  
Alasdair G. Kay ◽  
Kane Treadwell ◽  
Paul Roach ◽  
Rebecca Morgan ◽  
Rhys Lodge ◽  
...  

Mesenchymal stem cells (MSCs) immunomodulate inflammatory responses through paracrine signalling, including via secretion of extracellular vesicles (EVs) in the cell secretome. We evaluated the therapeutic potential of MSCs-derived small EVs in an antigen-induced model of arthritis (AIA). EVs isolated from MSCs cultured normoxically (21% O2, 5% CO2), hypoxically (2% O2, 5% CO2) or with a pro-inflammatory cytokine cocktail were applied into the AIA model. Disease pathology was assessed post-arthritis induction through swelling and histopathological analysis of synovial joint structure. Activated CD4+ T cells from healthy mice were cultured with EVs or MSCs to assess deactivation capabilities prior to application of standard EVs in vivo to assess T cell polarisation within the immune response to AIA. All EVs treatments reduced knee-joint swelling whilst only normoxic and pro-inflammatory primed EVs improved histopathological outcomes. In vitro culture with EVs did not achieve T cell deactivation. Polarisation towards CD4+ helper cells expressing IL17a (Th17) was reduced when normoxic and hypoxic EV treatments were applied in vitro. Normoxic EVs applied into the AIA model reduced Th17 polarisation and improved Regulatory T cell (Treg):Th17 homeostatic balance. Normoxic EVs present the optimal strategy for broad therapeutic benefit. EVs present an effective novel technology with the potential for cell-free therapeutic translation.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2629
Author(s):  
Erika Ortega-Hernández ◽  
Marilena Antunes-Ricardo ◽  
Daniel A. Jacobo-Velázquez

Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 946 ◽  
Author(s):  
Thanh Ninh Le ◽  
Chiu-Hsia Chiu ◽  
Pao-Chuan Hsieh

Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Xia ◽  
Zhanqiu Dai ◽  
Yongming Jin ◽  
Pengfei Chen

Mesenchymal stem cell-derived exosomes have been under investigation as potential treatments for a diverse range of diseases, and many animal and clinical trials have achieved encouraging results. However, it is well known that the biological activity of the exosomes is key to their therapeutic properties; however, till date, it has not been completely understood. Previous studies have provided different explanations of therapeutic mechanisms of the exosomes, including anti-inflammatory, immunomodulatory, and anti-aging mechanisms. The pathological effects of oxidative stress often include organ damage, inflammation, and disorders of material and energy metabolism. The evidence gathered from research involving animal models indicates that exosomes have antioxidant properties, which can also explain their anti-inflammatory and cytoprotective effects. In this study, we have summarized the antioxidant effects of exosomes in in vivo and in vitro models, and have evaluated the anti-oxidant mechanisms of exosomes by demonstrating a direct reduction in excessive reactive oxygen species (ROS), promotion of intracellular defence of anti-oxidative stress, immunomodulation by inhibiting excess ROS, and alteration of mitochondrial performance. Exosomes exert their cytoprotective and anti-inflammatory properties by regulating the redox environment and oxidative stress, which explains the therapeutic effects of exosomes in a variety of diseases, mechanisms that can be well preserved among different species.


2021 ◽  
Author(s):  
Alasdair G Kay ◽  
Kane Treadwell ◽  
Paul Roach ◽  
Rebecca Morgan ◽  
Rhys Lodge ◽  
...  

Novel biological therapies have revolutionised the management of Rheumatoid Arthritis (RA) but no cure currently exists. Mesenchymal stem cells (MSCs) immunomodulate inflammatory responses through paracrine signalling, including via secretion of extracellular vesicles (EVs) in the cell secretome. We evaluated the therapeutic potential of MSCs-derived small EVs in an antigen-induced model of arthritis (AIA). EVs isolated from MSCs cultured normoxically (21% O2, 5% CO2), hypoxically (2% O2, 5% CO2) or with a pro-inflammatory cytokine cocktail were applied into the AIA model. Disease pathology was assessed post-arthritis induction through swelling and histopathological analysis of synovial joint structure. Activated CD4+ T cells from healthy mice were cultured with EVs or MSCs to assess deactivation capabilities prior to application of standard EVs in vivo to assess T cell polarisation within the immune response to AIA. All EVs treatments reduced knee-joint swelling whilst only normoxic and pro-inflammatory primed EVs improved histopathological outcomes. In vitro culture with EVs did not achieve T cell deactivation. Polarisation towards CD4+ helper cells expressing IL17a (Th17) was reduced when normoxic and hypoxic EV treatments were applied in vitro. Normoxic EVs applied into the AIA model reduced Th17 polarisation and improved Th17:Treg homeostatic balance. Priming of MSCs in EV production can be applied to alter the therapeutic efficacy however normoxic EVs present the optimal strategy for broad therapeutic benefit. The varied outcomes observed in MSCs priming may promote EVs optimised for therapies targeted for specific therapeutic priorities. EVs present an effective novel technology with potential for cell-free therapeutic translation.


1976 ◽  
Vol 35 (01) ◽  
pp. 049-056 ◽  
Author(s):  
Christian R Klimt ◽  
P. H Doub ◽  
Nancy H Doub

SummaryNumerous in vivo and in vitro experiments, investigating the inhibition of platelet aggregation and the prevention of experimentally-induced thrombosis, suggest that anti-platelet drugs, such as aspirin or the combination of aspirin and dipyridamole or sulfinpyrazone, may be effective anti-thrombotic agents in man. Since 1971, seven randomized prospective trials and two case-control studies have been referenced in the literature or are currently being conducted, which evaluate the effects of aspirin, sulfinpyrazone, or dipyridamole in combination with aspirin in the secondary prevention of myocardial infarction. A critical review of these trials indicates a range of evidence from no difference to a favorable trend that antiplatelet drugs may serve as anti-thrombotic agents in man. To date, a definitive answer concerning the therapeutic effects of these drugs in the secondary prevention of coronary heart disease is not available.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Senthil Nagarajan ◽  
Jae Kwon Lee

AbstractSesamolin is one of the lignans derived from sesame oil. It has demonstrated significant antioxidant, anti-aging, and anti-mutagenic properties. It also reportedly augments natural killer (NK) cell lysis activity. We previously reported that sesamolin also exerts anticancer effects in vitro and induces enhanced NK cell cytolytic activity against tumor cells. Herein, we aimed to determine the mechanism by which sesamolin prevents and retards tumorigenesis in BALB/c mouse models of leukemia induced by murine (BALB/c) myelomonocytic leukemia WEHI-3B cells. Banded neutrophils, myeloblasts, and monocytic leukemic cells were more abundant in the leukemia model than in normal mice. Sesamolin decreased the number of leukemic cells by almost 60% in the leukemia model mice in vivo; additionally, sesamolin and the positive control drug, vinblastine, similarly hindered neoplastic cell proliferation. Spleen samples were ~ 4.5-fold heavier in leukemic mice than those obtained from normal mice, whereas spleen samples obtained from leukemic mice treated with sesamolin had a similar weight to those of normal mice. Moreover, sesamolin induced a twofold increase in the cytotoxic activity of leukemic mouse NK cells against WEHI-3B cells. These results indicated that sesamolin exerts anti-leukemic effects in vivo.


2021 ◽  
Vol 1 (1) ◽  
pp. 84-95
Author(s):  
Patience O. Obi ◽  
Jennifer E. Kent ◽  
Maya M. Jeyaraman ◽  
Nicole Askin ◽  
Taiana M. Pierdoná ◽  
...  

Asthma is the most common pediatric disease, characterized by chronic airway inflammation and airway hyperresponsiveness. There are several management options for asthma, but no specific treatment. Extracellular vesicles (EVs) are powerful cellular mediators of endocrine, autocrine and paracrine signalling, and can modulate biophysiological function in vitro and in vivo. A thorough investigation of therapeutic effects of EVs in asthma has not been conducted. Therefore, this systematic review is designed to synthesize recent literature on the therapeutic effects of EVs on physiological and biological outcomes of asthma in pre-clinical studies. An electronic search of Web of Science, EMBASE, MEDLINE, and Scopus will be conducted on manuscripts published in the last five years that adhere to standardized guidelines for EV research. Grey literature will also be included. Two reviewers will independently screen the selected studies for title and abstract, and full text based on the eligibility criteria. Data will be extracted, narratively synthesized and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This systematic review will summarize the current knowledge from preclinical studies investigating the therapeutic effects of EVs on asthma. The results will delineate whether EVs can mitigate biological hallmarks of asthma, and if so, describe the underlying mechanisms involved in the process. This insight is crucial for identifying key pathways that can be targeted to alleviate the burden of asthma. The data will also reveal the origin, dosage and biophysical characteristics of beneficial EVs. Overall, our results will provide a scaffold for future intervention and translational studies on asthma treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Praneetha Pallerla ◽  
Narsimha Reddy Yellu ◽  
Ravi Kumar Bobbala

Abstract Background The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate. Results Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis. Conclusions All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.


Sign in / Sign up

Export Citation Format

Share Document