scholarly journals Vitex agnus-castus L.: Main Features and Nutraceutical Perspectives

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761
Author(s):  
Eliana B. Souto ◽  
Alessandra Durazzo ◽  
Amirhossein Nazhand ◽  
Massimo Lucarini ◽  
Massimo Zaccardelli ◽  
...  

Medicinal plants are used worldwide due to their lower risk of side effects and eco-friendly, cost-effective production when compared to chemical drugs, encouraging researchers to further exploit the therapeutic potential of the former. One of the most popular medicinal plants is Vitex agnus-castus L., grown in tropical and sub-tropical regions, to which different health benefits have already been attributed. In this perspective article, the in vitro and in vivo therapeutic properties of V. agnus-castus L. have been analyzed and reviewed with a special focus on its health-promoting effects and potential nutraceutical applications.

2021 ◽  
Author(s):  
Alessandra Durazzo ◽  
Amirhossein Nazhand ◽  
Massimo Lucarini ◽  
Amelia M. Silva ◽  
Selma B. Souto ◽  
...  

AbstractMedicinal plants always are part of folk medicine and are nowadays receiving worldwide attention for prophylaxis, management, and treatment of several diseases, as an alternative to chemical drugs. The current work provided a comprehensive overview and analysis of the Astragalus and health relationship in literature. The analysis of their therapeutic potential is thus instrumental to understand their bioactivity. Among these, the flowering medicinal plant Astragalus membranaceus has raised interest due to several beneficial health effects. This perspective review discussed the botanical, geographical, historical, and the therapeutic properties of A. membranaceus, with a special focus on its health improving effects and medicinal applications both in vitro and in vivo. Graphic abstract


2021 ◽  
Vol 17 ◽  
Author(s):  
Amirhossein Nazhand ◽  
Alessandra Durazzo ◽  
Massimo Lucarini ◽  
Amelia M. Silva ◽  
Selma B. Souto ◽  
...  

: Medicinal plants have been globally exploiting as an alternative to chemical drugs in the treatment of several diseases due to low unwanted side effects, environmentally friendly nature and low production costs, therefore, it is important to analyze the therapeutic properties of various medicinal plants to understand their potential bioactivity. Uncaria tomentosa is one of these medicinal plants with many health-promoting effects. Although the geographical resources of cat's claw go back to the remote tropics of the Amazon, industrialized countries use the plant extensively in trade. Various parts of the plants such as flowers, leaves, Stem, hook, and seed are mainly used medicinally to treat inflammation, asthma, allergies, skin impurities, microbial infections, neurodegenerative diseases, cancer, cirrhosis, gastrointestinal disorders, arthritis, heart disease, rheumatism, and fever. The end point of this review article is to prospectively scrutinize in vitro and in vivo the therapeutic potential of this plant, especially in terms of its nutritional applications and health beneficial effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Muhammad Akram ◽  
Wafa Abbaass ◽  
...  

Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as “lemon balm herb”, can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2013 ◽  
Vol 27 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Hao Zhang ◽  
Dandan Yu ◽  
Jing Sun ◽  
Xianting Liu ◽  
Lu Jiang ◽  
...  

Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein–polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.


2018 ◽  
Vol 15 (4) ◽  
pp. 783-790 ◽  
Author(s):  
S. Rizwana Begum ◽  
D. Muralidhara Rao ◽  
P. Dinesh Sankar Reddy

Nanotechnology is a blazing field for the researchers in modern branch of science along with engineering have lot of applications. Nanotechnology is an imminent field with new outlet to fight and prevent many diseases using nanoparticles. Among the most promising materials Silver nanoparticles are having antimicrobial properties which are synthesized from medicinal plant and acts against chronic diseases. Silver nanoparticles synthesized from medicinal plants have lot of applications and eco-friendly, cost effective in nature. The present review article mainly focuses on biologically synthesized silver nanoparticles from medicinal plants and its role on cancer cells. Cancer is one of the most difficult health issues on globe. Although number of treatments may include radiation, chemotherapy and surgery, but these procedures not only targets tumor tissue but also normal healthy tissue. In recent years silver nanoparticles are considered as promising tool for cancer therapy. A numerous studies both in-vitro and in-vivo suggested that sliver nanoparticles can be used as cytotoxic and genotoxic agent due to their apoptotic inducing and anti-proliferative properties. However there is need to overlook the mechanism regarding the anti-cancerous activity. A silver nanoparticle deploys in every field of engineering science and medical sciences are still attracting to explore new scope of nanobiotechnology attributed with smaller size particles.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2629
Author(s):  
Erika Ortega-Hernández ◽  
Marilena Antunes-Ricardo ◽  
Daniel A. Jacobo-Velázquez

Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Nadia Saadat ◽  
Smiti V. Gupta

Garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit ofGarcinia indica, a plant found extensively in tropical regions. Although the fruit has been consumed traditionally over centuries, its biological activities, specifically its anticancer potential is a result of recent scientific investigations. The anticarcinogenic properties of garcinol appear to be moderated via its antioxidative, anti-inflammatory, antiangiogenic, and proapoptotic activities. In addition, garcinol displays effective epigenetic influence by inhibiting histone acetyltransferases (HAT 300) and by possible posttranscriptional modulation by mi RNA profiles involved in carcinogenesis.In vitroas well as somein vivostudies have shown the potential of this compound against several cancers types including breast, colon, pancreatic, and leukemia. Although this is a promising molecule in terms of its anticancer properties, investigations in relevant animal models, and subsequent human trials are warranted in order to fully appreciate and confirm its chemopreventative and/or therapeutic potential.


2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Rongqiang Yang ◽  
Xin Jiang ◽  
Rui Ji ◽  
Lingbin Meng ◽  
Fuli Liu ◽  
...  

AbstractPituitary adenylate cyclase activating polypeptide (PACAP) is widely expressed in the central and peripheral nervous system. PACAP can initiate multiple signaling pathways through binding with three class B G-protein coupled receptors, PAC1, VPAC1 and VPAC2. Previous studies have revealed numerous biological activities of PACAP in the nervous system. PACAP acts as a neurotransmitter, neuromodulator and neurotrophic factor. Recently, its neuroprotective potential has been demonstrated in numerous in vitro and in vivo studies. Furthermore, evidence suggests that PACAP might move across the blood-brain barrier in amounts sufficient to affect the brain functions. Therefore, PACAP has been examined as a potential therapeutic method for neurodegenerative diseases. The present review summarizes the recent findings with special focus on the models of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Based on these observations, the administered PACAP inhibits pathological processes in models of AD and PD, and alleviates clinical symptoms. It thus offers a novel therapeutic approach for the treatment of AD and PD.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document