scholarly journals Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2714
Author(s):  
Syada Nizer Sultana ◽  
Halim Park ◽  
Sung Hoon Choi ◽  
Hyun Jo ◽  
Jong Tae Song ◽  
...  

Stomatal observation and automatic stomatal detection are useful analyses of stomata for taxonomic, biological, physiological, and eco-physiological studies. We present a new clearing method for improved microscopic imaging of stomata in soybean followed by automated stomatal detection by deep learning. We tested eight clearing agent formulations based upon different ethanol and sodium hypochlorite (NaOCl) concentrations in order to improve the transparency in leaves. An optimal formulation—a 1:1 (v/v) mixture of 95% ethanol and NaOCl (6–14%)—produced better quality images of soybean stomata. Additionally, we evaluated fixatives and dehydrating agents and selected absolute ethanol for both fixation and dehydration. This is a good substitute for formaldehyde, which is more toxic to handle. Using imaging data from this clearing method, we developed an automatic stomatal detector using deep learning and improved a deep-learning algorithm that automatically analyzes stomata through an object detection model using YOLO. The YOLO deep-learning model successfully recognized stomata with high mAP (~0.99). A web-based interface is provided to apply the model of stomatal detection for any soybean data that makes use of the new clearing protocol.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoting Yin ◽  
Xiaosha Tao

Online business has grown exponentially during the last decade, and the industries are focusing on online business more than before. However, just setting up an online store and starting selling might not work. Different machine learning and data mining techniques are needed to know the users’ preferences and know what would be best for business. According to the decision-making needs of online product sales, combined with the influencing factors of online product sales in various industries and the advantages of deep learning algorithm, this paper constructs a sales prediction model suitable for online products and focuses on evaluating the adaptability of the model in different types of online products. In the research process, the full connection model is compared with the training results of CNN, which proves the accuracy and generalization ability of CNN model. By selecting the non-deep learning model as the comparison baseline, the performance advantages of CNN model under different categories of products are proved. In addition, the experiment concludes that the unsupervised pretrained CNN model is more effective and adaptable in sales forecasting.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yiran Feng ◽  
Xueheng Tao ◽  
Eung-Joo Lee

In view of the current absence of any deep learning algorithm for shellfish identification in real contexts, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multiobject recognition and localization through a second-order detection network and replaces the original feature extraction module with DenseNet, which can fuse multilevel feature information, increase network depth, and avoid the disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects and enhancing the network detection accuracy under multiple objects. By constructing a real contexts shellfish dataset and conducting experimental tests on a vision recognition seafood sorting robot production line, we were able to detect the features of shellfish in different scenarios, and the detection accuracy was improved by nearly 4% compared to the original detection model, achieving a better detection accuracy. This provides favorable technical support for future quality sorting of seafood using the improved Faster R-CNN-based approach.


2021 ◽  
Author(s):  
Jae-Seung Yun ◽  
Jaesik Kim ◽  
Sang-Hyuk Jung ◽  
Seon-Ah Cha ◽  
Seung-Hyun Ko ◽  
...  

Objective: We aimed to develop and evaluate a non-invasive deep learning algorithm for screening type 2 diabetes in UK Biobank participants using retinal images. Research Design and Methods: The deep learning model for prediction of type 2 diabetes was trained on retinal images from 50,077 UK Biobank participants and tested on 12,185 participants. We evaluated its performance in terms of predicting traditional risk factors (TRFs) and genetic risk for diabetes. Next, we compared the performance of three models in predicting type 2 diabetes using 1) an image-only deep learning algorithm, 2) TRFs, 3) the combination of the algorithm and TRFs. Assessing net reclassification improvement (NRI) allowed quantification of the improvement afforded by adding the algorithm to the TRF model. Results: When predicting TRFs with the deep learning algorithm, the areas under the curve (AUCs) obtained with the validation set for age, sex, and HbA1c status were 0.931 (0.928-0.934), 0.933 (0.929-0.936), and 0.734 (0.715-0.752), respectively. When predicting type 2 diabetes, the AUC of the composite logistic model using non-invasive TRFs was 0.810 (0.790-0.830), and that for the deep learning model using only fundus images was 0.731 (0.707-0.756). Upon addition of TRFs to the deep learning algorithm, discriminative performance was improved to 0.844 (0.826-0.861). The addition of the algorithm to the TRFs model improved risk stratification with an overall NRI of 50.8%. Conclusions: Our results demonstrate that this deep learning algorithm can be a useful tool for stratifying individuals at high risk of type 2 diabetes in the general population.


2021 ◽  
Author(s):  
Roberto Augusto Philippi Martins ◽  
Danilo Silva

The lack of labeled data is one of the main prohibiting issues on the development of deep learning models, as they rely on large labeled datasets in order to achieve high accuracy in complex tasks. Our objective is to evaluate the performance gain of having additional unlabeled data in the training of a deep learning model when working with medical imaging data. We present a semi-supervised learning algorithm that utilizes a teacher-student paradigm in order to leverage unlabeled data in the classification of chest X-ray images. Using our algorithm on the ChestX-ray14 dataset, we manage to achieve a substantial increase in performance when using small labeled datasets. With our method, a model achieves an AUROC of 0.822 with only 2% labeled data and 0.865 with 5% labeled data, while a fully supervised method achieves an AUROC of 0.807 with 5% labeled data and only 0.845 with 10%.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1140
Author(s):  
Jeong-Hee Lee ◽  
Jongseok Kang ◽  
We Shim ◽  
Hyun-Sang Chung ◽  
Tae-Eung Sung

Building a pattern detection model using a deep learning algorithm for data collected from manufacturing sites is an effective way for to perform decision-making and assess business feasibility for enterprises, by providing the results and implications of the patterns analysis of big data occurring at manufacturing sites. To identify the threshold of the abnormal pattern requires collaboration between data analysts and manufacturing process experts, but it is practically difficult and time-consuming. This paper suggests how to derive the threshold setting of the abnormal pattern without manual labelling by process experts, and offers a prediction algorithm to predict the potentials of future failures in advance by using the hybrid Convolutional Neural Networks (CNN)–Long Short-Term Memory (LSTM) algorithm, and the Fast Fourier Transform (FFT) technique. We found that it is easier to detect abnormal patterns that cannot be found in the existing time domain after preprocessing the data set through FFT. Our study shows that both train loss and test loss were well developed, with near zero convergence with the lowest loss rate compared to existing models such as LSTM. Our proposition for the model and our method of preprocessing the data greatly helps in understanding the abnormal pattern of unlabeled big data produced at the manufacturing site, and can be a strong foundation for detecting the threshold of the abnormal pattern of big data occurring at manufacturing sites.


2021 ◽  
Author(s):  
Ganesh N. Jorvekar ◽  
Mohit Gangwar

In recent years, the number of user comments and text materials has increased dramatically. Analysis of the emotions has drawn interest from researchers. Earlier research in the field of artificial-intelligence concentrate on identification of emotion and exploring the explanation the emotions can’t recognized or misrecognized. The association between the emotions leads to the understanding of emotion loss. In this Work we are trying to fill the gap between emotional recognition and emotional co-relation mining through social media reviews of natural language text. The association between emotions, represented as the emotional uncertainty and evolution, is mainly triggered by cognitive bias in the human emotion. Numerous types of features and Recurrent neural-network (RNN) as deep learning model provided to mine the emotion co-relation from emotion detection using text. The rule on conflict of emotions is derived on a symmetric basis. TF-IDF, NLP Features and Co-relation features has used for feature extraction as well as section and Recurrent Neural Network (RNN) and Hybrid deep learning algorithm for classification has used to demonstrates the entire research experiments. Finally evaluate the system performance with various existing system and show the effectiveness of proposed system.


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Hyuk-Ju Kwon ◽  
Hwi-Gang Kim ◽  
Sung-Hak Lee

This paper proposes a deep learning algorithm that can improve pill identification performance using limited training data. In general, when individual pills are detected in multiple pill images, the algorithm uses multiple pill images from the learning stage. However, when there is an increase in the number of pill types to be identified, the pill combinations in an image increase exponentially. To detect individual pills in an image that contains multiple pills, we first propose an effective database expansion method for a single pill. Then, the expanded training data are used to improve the detection performance. Our proposed method shows higher performance improvement than the existing algorithms despite the limited imaging and data set size. Our proposed method will help minimize problems, such as loss of productivity and human error, which occur while inspecting dispensed pills.


2020 ◽  
Vol 14 ◽  
pp. 174830262097352
Author(s):  
Anis Theljani ◽  
Ke Chen

Different from image segmentation, developing a deep learning network for image registration is less straightforward because training data cannot be prepared or supervised by humans unless they are trivial (e.g. pre-designed affine transforms). One approach for an unsupervised deep leaning model is to self-train the deformation fields by a network based on a loss function with an image similarity metric and a regularisation term, just with traditional variational methods. Such a function consists in a smoothing constraint on the derivatives and a constraint on the determinant of the transformation in order to obtain a spatially smooth and plausible solution. Although any variational model may be used to work with a deep learning algorithm, the challenge lies in achieving robustness. The proposed algorithm is first trained based on a new and robust variational model and tested on synthetic and real mono-modal images. The results show how it deals with large deformation registration problems and leads to a real time solution with no folding. It is then generalised to multi-modal images. Experiments and comparisons with learning and non-learning models demonstrate that this approach can deliver good performances and simultaneously generate an accurate diffeomorphic transformation.


2020 ◽  
Vol 12 (19) ◽  
pp. 3111
Author(s):  
Ming Xie ◽  
Ying Li ◽  
Kai Cao

Cyclone detection is a classical topic and researchers have developed various methods of cyclone detection based on sea-level pressure, cloud image, wind field, etc. In this article, a deep-learning algorithm is incorporated with modern remote-sensing technology and forms a global-scale cyclone/anticyclone detection model. Instead of using optical images, wind field data obtained from Mean Wind Field-Advanced Scatterometer (MWF-ASCAT) is utilized as the dataset for model training and testing. The wind field vectors are reconstructed and fed to the deep-learning model, which is built based on a faster-region with convolutional neural network (faster-RCNN). The model consists of three modules: a series of convolutional and pooling layers as the feature extractor, a region proposal network that searches for the potential areas of cyclone/anticyclone within the dataset, and the classifier that classifies the proposed region as cyclone or anticyclone through a fully-connected neural network. Compared with existing methods of cyclone detection, the test results indicate that this model based on deep learning is able to reduce the number of false alarms, and at the same time, maintain high accuracy in cyclone detection. An application of this method is presented in the article. By processing temporally continuous data of wind field, the model is able to track the path of Hurricane Irma in September, 2017. The advantages and limitations of the model are also discussed in the article.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Pranav Rajpurkar ◽  
Chloe O’Connell ◽  
Amit Schechter ◽  
Nishit Asnani ◽  
Jason Li ◽  
...  

Abstract Tuberculosis (TB) is the leading cause of preventable death in HIV-positive patients, and yet often remains undiagnosed and untreated. Chest x-ray is often used to assist in diagnosis, yet this presents additional challenges due to atypical radiographic presentation and radiologist shortages in regions where co-infection is most common. We developed a deep learning algorithm to diagnose TB using clinical information and chest x-ray images from 677 HIV-positive patients with suspected TB from two hospitals in South Africa. We then sought to determine whether the algorithm could assist clinicians in the diagnosis of TB in HIV-positive patients as a web-based diagnostic assistant. Use of the algorithm resulted in a modest but statistically significant improvement in clinician accuracy (p = 0.002), increasing the mean clinician accuracy from 0.60 (95% CI 0.57, 0.63) without assistance to 0.65 (95% CI 0.60, 0.70) with assistance. However, the accuracy of assisted clinicians was significantly lower (p < 0.001) than that of the stand-alone algorithm, which had an accuracy of 0.79 (95% CI 0.77, 0.82) on the same unseen test cases. These results suggest that deep learning assistance may improve clinician accuracy in TB diagnosis using chest x-rays, which would be valuable in settings with a high burden of HIV/TB co-infection. Moreover, the high accuracy of the stand-alone algorithm suggests a potential value particularly in settings with a scarcity of radiological expertise.


Sign in / Sign up

Export Citation Format

Share Document