scholarly journals Envisaging an Effective Global Long-Term Agrobiodiversity Conservation System That Promotes and Facilitates Use

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2764
Author(s):  
Charlotte Lusty ◽  
Ruaraidh Sackville Hamilton ◽  
Luigi Guarino ◽  
Chris Richards ◽  
Nelissa Jamora ◽  
...  

Genebanks were established out of a recognised need not just to provide genetic variation to support breeding objectives but to prevent crop diversity from being lost entirely for future users. Such conservation objectives may have led, over the past few decades, to a gradually diminishing connection between genebanks and current users of diversity. While there continues to be large-scale distribution of germplasm from genebanks to recipients worldwide, relatively little is known or published about the detailed trends in the demand for genebank materials. Meanwhile, the rapid expansion of the applications and uses of modern genomic technologies and approaches is, undoubtedly, having a transformational impact on breeding, research and the demand for certain genetic resources and associated data. These trends will require genebanks to be responsive and to adapt. They also provide important opportunities for genebanks to reorganize and become more efficient individually and as a community. Ultimately, future challenges and opportunities are likely to drive more demand for genetic diversity and provide an important basis for genebanks to gear up.

2021 ◽  
Vol 8 ◽  
Author(s):  
Kristen D. Splinter ◽  
Giovanni Coco

Sandy beaches comprise approximately 31% of the world's ice-free coasts. Sandy coastlines around the world are continuously adjusting in response to changing waves and water levels at both short (storm) and long (climate-driven, from El-Nino Southern Oscillation to sea level rise) timescales. Managing this critical zone requires robust, advanced tools that represent our best understanding of how to abstract and integrate coastal processes. However, this has been hindered by (1) a lack of long-term, large-scale coastal monitoring of sandy beaches and (2) a robust understanding of the key physical processes that drive shoreline change over multiple timescales. This perspectives article aims to summarize the current state of shoreline modeling at the sub-century timescale and provides an outlook on future challenges and opportunities ahead.


2020 ◽  
Vol 7 ◽  
Author(s):  
Cyril Poupet ◽  
Christophe Chassard ◽  
Adrien Nivoliez ◽  
Stéphanie Bornes

Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.


Author(s):  
Arash Anzalchi ◽  
Aditya Sundararajan ◽  
Longfei Wei ◽  
Amir Moghadasi ◽  
Arif Sarwat

The rapid growth of new technologies in power systems requires real-time monitoring and control of bidirectional data communication and electric power flow. Cloud computing has centralized architecture and is not scalable towards the emerging internet of things (IoT) landscape of the grid. Further, under large-scale integration of renewables, this framework could be bogged down by congestion, latency, and subsequently poor quality of service (QoS). This calls for a distributed architecture called fog computing, which imbibes both clouds as well as the end-devices to collect, process, and act upon the data locally at the edge for low latency applications prior to forwarding them to the cloud for more complex operations. Fog computing offers high performance and interoperability, better scalability and visibility, and greater availability in comparison to a grid relying only on the cloud. In this chapter, a prospective research roadmap, future challenges, and opportunities to apply fog computing on smart grid systems is presented.


2019 ◽  
pp. 2186-2212 ◽  
Author(s):  
Arash Anzalchi ◽  
Aditya Sundararajan ◽  
Longfei Wei ◽  
Amir Moghadasi ◽  
Arif Sarwat

The rapid growth of new technologies in power systems requires real-time monitoring and control of bidirectional data communication and electric power flow. Cloud computing has centralized architecture and is not scalable towards the emerging internet of things (IoT) landscape of the grid. Further, under large-scale integration of renewables, this framework could be bogged down by congestion, latency, and subsequently poor quality of service (QoS). This calls for a distributed architecture called fog computing, which imbibes both clouds as well as the end-devices to collect, process, and act upon the data locally at the edge for low latency applications prior to forwarding them to the cloud for more complex operations. Fog computing offers high performance and interoperability, better scalability and visibility, and greater availability in comparison to a grid relying only on the cloud. In this chapter, a prospective research roadmap, future challenges, and opportunities to apply fog computing on smart grid systems is presented.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 517C-517
Author(s):  
N.G. Creamer ◽  
J.P. Mueller

The Center for Environmental Farming Systems (CEFS) is dedicated to developing farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Dept. of Agriculture Cherry Farm near Goldsboro, CEFS has >2000 acres (1000 cleared). This unique center is a partnership among North Carolina State Univ., North Carolina Agriculture and Technical State Univ., North Carolina Dep. of Agriculture and Consumer Services, nongovernmental organizations, and other state and federal agencies, farmers, and citizens. Long-term cropping systems that integrate the broad range of factors involved in agricultural systems is the focus of the Cropping Systems Unit at CEFS. The USDA SARE program has provided funding to help establish a comprehensive long-term, large-scale experiment. Data collection and analyses include comprehensive soil and water quality, pests and predators (weeds, insects, and disease), crop factors (growth, yield, and quality), economic factors (viability, on/off farm impact, and community), and energy issues. Systems being compared are a successional ecosystem, plantation forestry/wood lot, integrated crop/animal production system, organic production system, and a cash-grain cropping system (BMP). An interdisciplinary team of scientists from almost every department from the College of Agriculture and Life Sciences, along with faculty from North Carolina Agriculture and Technical State Univ., NGO representatives, and farmers are collaborating in this endeavor. Challenges and opportunities in building collaborative teams and setting up such long-term trials will be discussed.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


Sign in / Sign up

Export Citation Format

Share Document