scholarly journals Physiological and Morphological Responses of Okra (Abelmoschus esculentus L.) to Rhizoglomus irregulare Inoculation under Ample Water and Drought Stress Conditions Are Cultivar Dependent

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Amna Eltigani ◽  
Anja Müller ◽  
Benard Ngwene ◽  
Eckhard George

Okra is an important crop species for smallholder farmers in many tropical and subtropical regions of the world. Its interaction with mycorrhiza has been rarely studied, and little is known about its mycorrhizal dependency, especially under drought stress. In a glasshouse experiment, we investigated the effect of Arbuscular Mycorrhiza Fungi (AMF) inoculation on growth, evapotranspiration, mineral nutrition and root morphology of five okra cultivars under ample water and drought stress conditions. ‘Khartoumia’, ‘HSD6719’, ‘HSD7058’, ‘Sarah’ and ‘Clemson Spineless’-cultivars commonly used by farmers in Sudan were chosen for their geographical, morphological and breeding background variations. The plants were either inoculated with R. irregulare or mock-inoculated. Seven weeks after seeding, the soil–water content was either maintained at 20% w/w or reduced to 10% w/w to impose drought stress. Drought stress resulted in plant P deficiency and decreased shoot dry biomass (DB), especially in HSD7058 and Clemson Spineless (69% and 56% decrease in shoot DB, in the respective cultivars). Plant inoculation with AMF greatly enhanced the shoot total content of P and the total DB in all treatments. The mycorrhizal dependency (MD) -the degree of total plant DB change associated with AM colonization- differed among the cultivars, irrespective of the irrigation treatment. Key determinants of MD were the root phenotype traits. Khartoumia (with the highest MD) had the lowest root DB, root-to-shoot ratio, and specific root length (SRL). Meanwhile, HSD6719 (with the lowest MD) had the highest respective root traits. Moreover, our data suggest a relationship between breeding background and MD. The improved cultivar Khartoumia showed the highest MD compared with the wild-type Sarah and the HSD7058 and HSD6719 landraces (higher MD by 46%, 17% and 32%, respectively). Interestingly, the drought-affected HSD7058 and Clemson Spineless exhibited higher MD (by 27% and 15%, respectively) under water-deficiency compared to ample water conditions. In conclusion, the mediation of drought stress in the okra plant species by AMF inoculation is cultivar dependent. The presence of AMF propagules in the field soil might be important for increasing yield production of high MD and drought susceptible cultivars, especially under drought/low P environments.

2019 ◽  
Vol 6 (1) ◽  
pp. 20-26
Author(s):  
Fesya Salma Putri ◽  
Endang Nurcahyani ◽  
Yulianty Yulianty ◽  
Bambang Irawan

Dendrobium sp. was a popular ornamental plant and has high economic value. One of many difficulties in the growth of orchids in Indonesia is low humidity and lack of water availability. Regulatory Substance Growth in the form of an atonic solution can increase the growth of orchid plants. The purpose of this study was to determine the effect of atonic solutions on orchid chlorophyll content in drought stress conditions. This study used a 3x3 factorial design. Factor A is the atonic solution with 3 levels of concentration: 0 mL/L, 2 mL/L, and 3 mL/L. Factor B is PEG 6000 with 3 concentration levels: 0% b/v, 20% b/v and 25% b/v. The parameters tested were chlorophyll a, b and total Dendrobium orchid plantlets. The results showed that atonic solution and PEG 6000 significantly affected the chlorophyll a, b and total content of chlorophyll. The higher concentration of the atonic solution, the more content of chlorophyll a, b and total plantlets of decreased in drought stress conditions in vitro.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9040
Author(s):  
Zilong Li ◽  
Akash Tariq ◽  
Kaiwen Pan ◽  
Corina Graciano ◽  
Feng Sun ◽  
...  

Intercropping may improve community stability and yield under climate change. Here, we set up a field experiment to evaluate the advantages of cultivating Z anthoxylum bungeanum with Capsicum annum, and Z. bungeanum with Glycine max as intercrops, compared with cultivating Z. bungeanum in monoculture. Effects of extreme drought stress conditions on morphological, physiological, and biochemical traits of the three crop species cultivated in the three contrasting planting systems were compared. Results showed that extreme drought conditions induced negative impacts on Z. bungeanum grown in monoculture, due to reduced growth and metabolic impairment. However, limited stomatal conductance, reduced transpiration rate (Tr), and increased water use efficiency, carotenoid content, catalase activity, and accumulation of soluble sugars in Z. bungeanum indicated its adaptive strategies for tolerance of extreme drought stress conditions. Compared with cultivation in monoculture, intercropping with C. annum had positive effects on Z. bungeanum under extreme drought stress conditions, as a result of improved crown diameter, leaf relative water content (LRWC), net photosynthetic rate, and proline content, while intercropping with G. max under extreme drought stress conditions increased net CO2 assimilation rates, LRWC, Tr, and superoxide dismutase (SOD) activity. In conclusion, Z. bungeanum has an effective defense mechanism for extreme drought stress tolerance. Intercropping with G. max enhanced this tolerance potential primarily through its physio-biochemical adjustments, rather than as a result of nitrogen fixation by G. max.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
F Nabbie ◽  
O Shperdheja ◽  
J Millot ◽  
J Lindberg ◽  
B Peethambaran

2021 ◽  
Author(s):  
Xiucheng Liu ◽  
Yuting Wang ◽  
Shuangri Liu ◽  
Miao Liu

Abstract Aims Phosphorus (P) availability and efficiency are especially important for plant growth and productivity. However, the sex-specific P acquisition and utilization strategies of dioecious plant species under different N forms are not clear. Methods This study investigated the responsive mechanisms of dioecious Populus cathayana females and males based on P uptake and allocation to soil P supply under N deficiency, nitrate (NO3 −) and ammonium (NH4 +) supply. Important Findings Females had a greater biomass, root length density (RLD), specific root length (SRL) and shoot P concentration than males under normal P availability with two N supplies. NH4 + supply led to higher total root length, RLD and SRL but lower root tip number than NO3 − supply under normal P supply. Under P deficiency, males showed a smaller root system but greater photosynthetic P availability and higher leaf P remobilization, exhibiting a better capacity to adaptation to P-deficiency than females. Under P deficiency, NO3 − supply increased leaf photosynthesis and PUE but reduced RLD and SRL in females while males had higher leaf P redistribution and photosynthetic PUE than NH4 + supply. Females had a better potentiality to cope with P deficiency under NO3 − supply than NH4 + supply; the contrary was true for males. These results suggest that females may devote to increase in P uptake and shoot P allocation under normal P availability, especially under NO3 − supply, while males adopt more efficient resource use and P remobilization to maximum their tolerance to P-deficiency.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. Y. Su ◽  
J. J. Powell ◽  
S. Gao ◽  
M. Zhou ◽  
C. Liu

Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.


Author(s):  
Dong Van Nguyen ◽  
Huong Mai Nguyen ◽  
Nga Thanh Le ◽  
Kien Huu Nguyen ◽  
Hoa Thi Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document