scholarly journals Organic Amendments Effects on Nutrient Uptake, Secondary Metabolites, and Antioxidant Properties of Melastoma malabathricum L.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Lili Syahani Rusli ◽  
Rosazlin Abdullah ◽  
Jamilah Syafawati Yaacob ◽  
Normaniza Osman

Amelioration of soil acidity can boost soil fertility, hence increasing nutrient uptake, secondary metabolite, and its antioxidant potential. In the present study, the effectiveness of food waste compost and palm kernel biochar was assessed as soil amendments for Melastoma malabathricum L. grown in acidic soil conditions. A six-month greenhouse study was conducted using completely randomized design (CRD) with three treatment groups, including control plants (T1), plants amended with palm kernel biochar (T2), and plants amended with food waste compost (T3). Data analysis revealed that Melastoma malabathricum L. amended with T3 recorded the highest total chlorophyll content (433.678 ± 13.224 µg g−1 DW), followed by T2 and T1. The increase in chlorophyll content was contributed by the increase in soil pH. This was shown by the positive significant correlations between soil pH and chlorophyll a (r2 = 0.96; p ≤ 0.01) and chlorophyll b (r2 = 0.778; p ≤ 0.01). In addition, the same treatment exhibited the highest total anthocyanin content (leaves; 36.1 × 10−2 ± 0.034 mg/g DW and root extract; 8.9 × 10−2 ± 0.020 mg/g DW), total phenolic content (stem extract; 4930.956 ± 16.025 mg GAE/g DE), and total flavonoid content (stem extract; 209.984 ± 0.572 mg QE/g DE). Moreover, this study also found that the highest antioxidant potential against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals was exhibited by samples supplemented with food waste compost (T3), followed by palm kernel biochar (T2). This indicates that the soil amendments have the capacity to enhance the secondary metabolites that protect plants, therefore ameliorating Melastoma malabathricum L.’s response towards acidic stress, and resulting in better antioxidant properties. Furthermore, this study also recorded better nutrient uptake in T3. With the significantly higher levels of macronutrient in the soil, the food waste compost could enhance the nutrient properties, secondary metabolites, and antioxidant capacity of Melastoma malabathricum L. grown in acidic soil conditions.

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


Mycobiology ◽  
2013 ◽  
Vol 41 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Eun-Young Jo ◽  
Jae-Lyoung Cheon ◽  
Johng-Hwa Ahn

2021 ◽  
Vol 4 (2) ◽  
pp. 66-72
Author(s):  
Robby Candra Purnama ◽  
Annisa Primadiamanti

Kepok banana plants contain secondary metabolites such as tannins and flavonoids. Tannins and flavonoids have various properties for human health. Research has been carried out to identify secondary metabolite compounds (tannins, flavonoids, and saponins) by using the phytochemical screening method to see the functional group profile contained in the extract of kepok banana stem waste. Kepok banana stem waste was extracted in 96% ethanol, then evaporated and screened phytochemically. This extract was used to prepare effervescently. Screening results showed that tannin and flavonoids were identified by the appearance of the following color black-green and dark red, respectively. Meanwhile, saponins were negative because the foam formed had a height of 0.3 cm and did not meet the saponins' positive requirements (1-3 cm high foam and stable for 5 minutes). Identification of functional groups in the extract of kepok banana stem waste using Fourier-transform Infrared Spectroscopy (FTIR) showed that C-C stretching in the area 2927.24 cm-1, O-H stretching in the 3423.87 cm-1 area, C=O stretching in the 1648.87 cm-1 area. Also appeared bending CH2 in the region of 1421.45 cm-1, and C-C in the area of 1149.98 cm-1. The characteristics of three different formulas (A, B, and C) of effervescent have been investigated: the moisture content of 2.51%; 2.55%, and 2.52%, respectively. Then, flow rate of 8.81 g/s; 8.83 g/s; and 8.82 g/s, compressibility of 14.5%; 14.4%; and 14.5%, and a pH of 5.97; 5.98; and 5.97 respectively. All parameters are eligible.


2020 ◽  
Vol 9 (1) ◽  
pp. 27-35
Author(s):  
Charles Ntungwen fokunang ◽  
Jessica Ketchemen pougoue ◽  
Estella Tembe Fokunang ◽  
Eustace Bongham Joseph ◽  
Ngoupayo J ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9595
Author(s):  
Deivaseeno Dorairaj ◽  
Muhammad Fahmi Suradi ◽  
Nursyamimi Syafiqah Mansor ◽  
Normaniza Osman

Globally, there has been an increase in the frequency of landslides which is the result of slope failures. The combination of high intensity rainfall and high temperature resulted in the formation of acidic soil which is detrimental to the healthy growth of plants. Proper plant coverage on slopes is a prerequisite to mitigate and rehabilitate the soil. However, not all plant species are able to grow in marginal land. Thus, this study was undertaken to find a suitable slope plant species. We aimed to evaluate the effect of different soil pH on root profiles and growth of three different potential slope plant species namely, Melastoma malabathricum, Hibiscus rosa-sinensis and Syzygium campanulatum. M. malabathricum showed the highest tolerance to acidic soil as it recorded the highest plant height and photosynthetic rate. The root systems of M. malabathricum, H. rosa-sinensis and S. campanulatum were identified as M, VH- and R-types, respectively. The study proposed M. malabathricum which possessed dense and shallow roots to be planted at the toe or top of the slope while H. rosa-sinensis and S. campanulatum to be planted in the middle of a slope. S. campanulatum consistently recorded high root length and root length density across all three types of soil pH while M. malabathricum showed progressive increase in length as the soil pH increased. The root average diameter and root volume of M. malabathricum outperformed the other two plant species irrespective of soil pH. In terms of biomass, M. malabathricum exhibited the highest root and shoot dry weights followed by S. campanulatum. Thus, we propose M. malabathricum to be planted on slopes as a form of soil rehabilitation. The plant species displayed denser rooting, hence a stronger root anchorage that can hold the soil particles together which will be beneficial for slope stabilization.


Food Research ◽  
2021 ◽  
Vol 5 (S4) ◽  
pp. 30-37
Author(s):  
N.H. Ismail ◽  
Amira N.H. ◽  
S.N.H.M. Latip ◽  
W.Z.W.M. Zain ◽  
S.N.A. Aani ◽  
...  

Melastoma malabathricum and Chromolaena odorata are classified under broad-leaved weeds that are widely spread in the open land area. Melastoma malabathricum is commonly known as ‘‘senduduk’’, and C. odorata is locally known as “Pokok Kapal Terbang”. Both weeds are categorized as potential weeds as they have high nutritive value and are rich in chemical compounds. This study aimed to determine their chemical constituents and possible potential for antioxidant activity as these weeds have been reported to possess antioxidant properties. Screening of the plants was performed using standard methods and revealed the existence of various secondary metabolites such as saponins, terpenoids, phenols, tannins, and flavonoids of both weed extracts. Antioxidant activity was validated by the DPPH radical scavenging assay of M. malabathricum and C. odorata crude ethanol extract. The IC50 values for the percentage radical scavenging effects for the extracts were determined. The IC50 value of M. malabatrichum extract was 81.116 μg/mL, C. odorata was 312.903 μg/mL, Vitamin C was 31.023 μg/mL and BHA was 71.521 μg/mL respectively. The study showed that the antioxidant activity of M. malabatrichum was more potent and better than C. odorata.


Sign in / Sign up

Export Citation Format

Share Document