scholarly journals Root Morphology, Allometric Relations and Rhizosheath of Ancient and Modern Tetraploid Wheats (Triticum durum Desf.) in Response to Inoculation with Trichoderma harzianum T-22

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 159
Author(s):  
Rocco Bochicchio ◽  
Rosanna Labella ◽  
Antonella Vitti ◽  
Maria Nuzzaci ◽  
Giuseppina Logozzo ◽  
...  

Early root traits and allometrics of wheat are important for competition and use of resources. They are under-utilized in research and un-explored in many ancient wheats. This is especially true for the rhizosheath emerging from root-soil interactions. We investigated root morphology, root/shoot relations and the amount of rhizosheath of four tetrapoid wheat seedlings (30 days after emergence): the italian landrace Saragolle Lucana and modern varieties Creso, Simeto and Ciclope, and tested the hypothesis that inoculation with Trichoderma harzianum T-22 (T-22) enhances rhizosheath formation and affects wheat varieties differently. Overall growth of non-inoculated plants showed different patterns in wheat varieties, with Saragolle and Ciclope at the two extremes: Saragolle invests in shoot rather than root mass, and in the occupation of space with highest (p < 0.05) shoot height to the uppermost internode (5.02 cm) and length-to-mass shoot (97.8 cm g−1) and root (more than 140 m g−1) ratios. This may be interpreted as maximizing competition for light but also as a compensation for low shoot efficiency due to the lowest (p < 0.05) recorded values of optically-measured chlorophyll content index (22.8). Ciclope invests in biomass with highest shoot (0.06 g) and root (0.04 g) mass and a thicker root system (average diameter 0.34 mm vs. 0.29 in Saragolle) as well as a highest root/shoot ratio (0.95 g g−1 vs. 0.54 in Saragolle). Rhizosheath mass ranged between 22.14 times that of shoot mass in Ciclope and 43.40 in Saragolle (different for p < 0.05). Inoculation with Trichoderma increased the amount of rhizosheath from 9.4% in Ciclope to 36.1% in Simeto and modified root architecture in this variety more than in others. Ours are the first data on roots and seedling shoot traits of Saragolle Lucana and of Trichoderma inoculation effects on rhizosheath. This opens to new unreported interpretations of effects of Trichoderma inoculation on improving plant growth.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


2018 ◽  
Vol 35 (0) ◽  
Author(s):  
A. ZOHAIB ◽  
T. TABASSUM ◽  
S.A. ANJUM ◽  
T. ABBAS ◽  
U. NAZIR

ABSTRACT: Weeds associated with crops may impose their phytotoxic effects on crop plants through the release of their allelochemicals and hence seriously reduce crop productivity. The present study was conducted to investigate the allelopathic effect of water soluble phenolics of weeds associated with wheat crop (Vicia sativa, Trigonella polycerata, Lathyrus aphaca, Medicago polymorpha, Melilotus indica) on germinability and biomass production of wheat seedlings by using their water extracts at 2.5% (w/v) and 5% (w/v) concentrations and residues of the same weeds with 0, 15 and 30 d decomposition periods at 2% (w/w) concentration. The results showed that the water extracts of M. indica and V. sativa at 5% concentration imposed the most inhibitory effect on energy of germination (81%) and prolonged time to 50% germination (226%), respectively; by contrast, T. polycerata and M. indica extracts at the same concentration inhibited shoot (8%) and root fresh biomass (64%). However, shoot dry biomass was exalted by the weed extracts at both concentrations with maximum increase (29%) caused by the M.indica extract at 2.5% concentration; however, root dry biomass (46%) and root/shoot ratio (51%) were decreased by M. polymorpha and M. indica extracts at 5% concentration, respectively. Residues of L. aphaca and M. polymorpha with a 30 d decomposition period proved the most toxic regarding energy of emergence (85%) and time to 50% emergence (138%), respectively; while, shoot fresh (41%) and dry biomass (26%) production were hindered mostly by M. indica and M. polymorpha residues with a 30 d decomposition period. There was the highest decrease in root fresh (64%) and dry biomass (64%), and root/shoot ratio (64%) when treatment was performed with V. sativa residues without decomposition. The results show that leachates and residues of weeds inhibit wheat germinability and biomass production through release of allelochemicals, and they are a threat to profitable crop production.


2020 ◽  
Vol 79 (2) ◽  
pp. 121-130
Author(s):  
Lyudmila Simova-Stoilova ◽  
Elisaveta Kirova ◽  
Dobrina Pecheva

Radiation mutagenesis has been used in sustainable agriculture as a tool for increasing plant variability and providing new lines for selection. This necessitates a comparison, by using suitable stress markers, of the newly created lines with some well-established varieties, which are stress tolerant or susceptible. Drought is one of the most frequently encountered stresses with deleterious effects on plant performance and crop yield. Winter wheat seedlings (soil cultures at 3–4th leaf stage) from one mutant line (M181/1338K), one drought-tolerant (Guinness) and one sensitive variety (Farmer) were subjected to severe drought stress by water withholding, followed by recovery. Changes in leaf protein profiles, the amount of Rubisco large subunit (RLS), some specific chloroplast proteins such as Rubisco binding protein (RPB), Rubisco activase (RA), the chaperone subunit clpA/C of clp protease, as well as the activities of exo- and endo-proteases were analyzed. At the protein level, some differences were found in the drought response of genotypes – stability of RLS and RBP in M181/1338K and Guinness, diminution of RLS and increase in RBP in Farmer. RA presented strong up-regulation at recovery in Guinness but decreased in content under drought in M181/1338K and Farmer. Increase in ClpA/C level was found in all compared varieties under stress. Strong increase in total proteolytic activity was detected under drought only in Farmer. Inhibitory analysis revealed a predominance of cysteine and serine protease types. Aminopeptidase activities remained higher at recovery in M181/1338K and Farmer. Results are discussed in terms of genotype-linked different stress coping strategies.


2013 ◽  
Vol 726-731 ◽  
pp. 81-84
Author(s):  
Wu Xing Huang ◽  
Cong Ren ◽  
Jing Qing Gao

Two Rumex japonicus populations, one from copper (Cu) mine and the other from uncontaminated site, were studied for root morphology and biomass under Cu stress. Main root length and number of tips of the two populations were both significantly inhibited by Cu treatments. However, those of metallicolous population (MP) were higher than non-metallicolous population (NMP) under Cu stress. Cu treatments significantly inhibited root surface area in NMP while MP showed little difference from control. Cu treatments inhibited average root diameter and root/shoot ratio in NMP, but those in MP were significantly higher than control. Cu treatments significantly inhibited shoot biomass and root biomass in NMP. These results suggested that more assimilates allocated to root and the average root diameter increased under Cu stress to form a greater and stronger root might be partly reasons why R. japonicus can colonize the Cu enriched soils.


AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
pp. plv097 ◽  
Author(s):  
Yan-Liang Wang ◽  
Marit Almvik ◽  
Nicholas Clarke ◽  
Susanne Eich-Greatorex ◽  
Anne Falk Øgaard ◽  
...  

2011 ◽  
Vol 30 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Yongzhe Ren ◽  
Xue He ◽  
Dongcheng Liu ◽  
Jingjuan Li ◽  
Xueqiang Zhao ◽  
...  

2014 ◽  
Vol 12 (1) ◽  
pp. 45-54 ◽  
Author(s):  
AHK Robin ◽  
MJ Uddin ◽  
S Afrin ◽  
PR Paul

The aims of this study were to investigate genotypic variations in root traits at phytomer level of wheat varieties and for recommending a few root traits as selection parameters in future breeding programs. Two separate experiments were conducted to measure their root traits for hydroponically grown wheat plants. In Experiment 1, main axis length, root hair density and diameter differed from phytomer to phytomer at 60 days after sowing for two varieties, Shotabdi and Sonalika. Density of first order laterals at their axis of origin, dry weights of roots and shoots and root:shoot ratio varied significantly among 8 varieties. In Experiment 2, number of root bearing phytomer, total number of adventitious roots, main axis length at root bearing phytomer 1 and 2 (youngest roots were the reference point and numbered as phytomer 1), length of first order laterals at phytomer 3, root hair density and dry weights of roots and shoots were significantly different among varieties. PC1 (principal component 1) resulted in significant variation among varieties for number of live leaves, new roots appeared, number of root bearing phytomer, total number of adventitious roots, root dry weight and shoot dry weight. PC2 yielded significant difference among varieties for live leaves, main axes length at phytomer 1 & 2, number of new roots, root hair density and diameter. Selection of varieties based on main axes length at the youngest phytomer & root hair density per unit surface area along with dry weights of roots and shoots could be recommended for future breeding program as these four parameters consistently resulted in significant variation among varieties. DOI: http://dx.doi.org/10.3329/jbau.v12i1.21238 J. Bangladesh Agril. Univ. 12(1): 45-54, June 2014


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 637 ◽  
Author(s):  
Leandro Pereira-Dias ◽  
Daniel Gil-Villar ◽  
Vincente Castell-Zeising ◽  
Ana Quiñones ◽  
Ángeles Calatayud ◽  
...  

Agriculture will face many challenges regarding food security and sustainability. Improving phosphorus use efficiency is of paramount importance to face the needs of a growing population while decreasing the toll on the environment. Pepper (Capsicum spp.) is widely cultivated around the world; hence, any breakthrough in this field would have a major impact in agricultural systems. Herein, the response to phosphorus low-input conditions is reported for 25 pepper accessions regarding phosphorus use efficiency, biomass and root traits. Results suggest a differential response from different plant organs to phosphorus starvation. Roots presented the lowest phosphorus levels, possibly due to mobilizations towards above-ground organs. Accessions showed a wide range of variability regarding efficiency parameters, offering the possibility of selecting materials for different inputs. Accessions bol_144 and fra_DLL showed an interesting phosphorus efficiency ratio under low-input conditions, whereas mex_scm and sp_piq showed high phosphorus uptake efficiency and mex_pas and sp_bola the highest values for phosphorus use efficiency. Phosphorus low-input conditions favored root instead of aerial growth, enabling increases of root total length, proportion of root length dedicated to fine roots and root specific length while decreasing roots’ average diameter. Positive correlation was found between fine roots and phosphorus efficiency parameters, reinforcing the importance of this adaptation to biomass yield under low-input conditions. This work provides relevant first insights into pepper’s response to phosphorus low-input conditions.


1963 ◽  
Vol 41 (8) ◽  
pp. 1171-1185 ◽  
Author(s):  
J. T. Slykhuis

Wheat striate mosaic virus from wheat in southeastern Saskatchewan was acquired and transmitted by both nymphs and adults of the leafhopper Endria inimica (Say) collected in Ontario. The preinfective period of leafhoppers varied from 4–6 to 22–24 days after they first fed on diseased plants. Records of serial transmission by individual insects varied greatly. Some insects infected most test plants on which they were given 2-day feeds during 20 to 30 days after the preinfective period, but subsequently they transmitted irregularly. Some transmitted virus for only a few days. Others transmitted intermittently for several weeks. None of the insects infected any plants on which they fed later than 72 days after feeding on diseased plants even though some lived another 10 to 20 days. Two of 25 insects became infective after feeds as short as 30 seconds on diseased plants, but the percentages of infective insects increased to more than 90% as acquisition access times were increased to 2 or more days. All insects from some inbred lines became infective after 3 days on diseased plants, but 45% of the descendants of one non-transmitting female failed to become infective. The inoculation threshold period on Ramsey wheat test plants was 15 minutes, but the percentage of test plants infected increased from 15% to 88.8% as the test access times were increased to 4 days. The incubation period of the virus in Ramsey wheat seedlings varied from 6 to more than 28 days.In tests of host reactions, all durum wheat varieties were highly susceptible to the virus. Several of the hard red spring and winter wheat varieties were highly susceptible and a few others were highly resistant or immune, but most were mildly to moderately susceptible. Most varieties of oats and barley and 10 species of wild annual grasses were moderately susceptible. Mild to moderate symptoms also developed on some of the plants in one or more varieties of Zea mays L., Lolium multiflorum Lam., L. perenne L., and Bromus inermis Leyss. Four varieties of rye tested did not develop symptoms, nor did any plants in 13 species of perennial grasses, including Chloris gayana Kunth, which is susceptible to the Australian wheat striate mosaic virus. E. inimica multiplied on wheat and 14 other annual and 21 perennial grass species, many of which are common on the prairies. There was considerable variation in the reactions to the virus of different plants in the variety Ramsey, but there were no inherent variations detected between the virus isolates used for the experiments. The wheat varieties Cappelle-Desprez and Rescue which are highly susceptible to the European type of wheat striate mosaic virus did not become infected with the Canadian isolates tested.Attempts to transmit the European type of wheat striate mosaic virus with E. inimica failed.


Sign in / Sign up

Export Citation Format

Share Document