scholarly journals Drought stress response in winter wheat varieties – changes in leaf proteins and proteolytic activities

2020 ◽  
Vol 79 (2) ◽  
pp. 121-130
Author(s):  
Lyudmila Simova-Stoilova ◽  
Elisaveta Kirova ◽  
Dobrina Pecheva

Radiation mutagenesis has been used in sustainable agriculture as a tool for increasing plant variability and providing new lines for selection. This necessitates a comparison, by using suitable stress markers, of the newly created lines with some well-established varieties, which are stress tolerant or susceptible. Drought is one of the most frequently encountered stresses with deleterious effects on plant performance and crop yield. Winter wheat seedlings (soil cultures at 3–4th leaf stage) from one mutant line (M181/1338K), one drought-tolerant (Guinness) and one sensitive variety (Farmer) were subjected to severe drought stress by water withholding, followed by recovery. Changes in leaf protein profiles, the amount of Rubisco large subunit (RLS), some specific chloroplast proteins such as Rubisco binding protein (RPB), Rubisco activase (RA), the chaperone subunit clpA/C of clp protease, as well as the activities of exo- and endo-proteases were analyzed. At the protein level, some differences were found in the drought response of genotypes – stability of RLS and RBP in M181/1338K and Guinness, diminution of RLS and increase in RBP in Farmer. RA presented strong up-regulation at recovery in Guinness but decreased in content under drought in M181/1338K and Farmer. Increase in ClpA/C level was found in all compared varieties under stress. Strong increase in total proteolytic activity was detected under drought only in Farmer. Inhibitory analysis revealed a predominance of cysteine and serine protease types. Aminopeptidase activities remained higher at recovery in M181/1338K and Farmer. Results are discussed in terms of genotype-linked different stress coping strategies.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Haddad A. El Rabey ◽  
Abdulrahman L. Al-Malki ◽  
Khalid O. Abulnaja

Date palm cultivars differently tolerate salinity and drought stress. This study was carried out to study the response of date palm to severe salinity and drought based on leaf proteome analysis. Eighteen-month-old date palm plants were subjected to severe salt (48 g/L NaCl) and drought (82.5 g/L PEG or no irrigation) conditions for one month. Using a protein 2D electrophoresis method, 55 protein spots were analyzed using mass spectrometry. ATP synthase CF1 alpha chains were significantly upregulated under all three stress conditions. Changes in the abundance of RubisCO activase and one of the RubisCO fragments were significant in the same spots only for salt stress and drought stress with no irrigation, and oxygen-evolving enhancer protein 2 was changed in different spots. Transketolase was significantly changed only in drought stress with PEG. The expression of salt and drought stress genes of the chosen protein spots was either overexpressed or downexpressed as revealed by the high or low protein abundance, respectively. In addition, all drought tolerance genes due to no irrigation were downregulated. In conclusion, the proteome analysis of date palm under salinity and drought conditions indicated that both salinity and drought tolerance genes were differentially expressed resulting in high or low protein abundance of the chosen protein spots as a result of exposure to drought and salinity stress condition.


2021 ◽  
Author(s):  
Qiuzhu Wang ◽  
Lin Zhang ◽  
Shushen Yang

Abstract Backgrounds: Wheat (Triticum aestivum L.) is one of the most important food crops in the world. It faces various abiotic stresses during its growth. Drought is one of the main factors limiting the growth and development of wheat. Severe drought stress will Lead to a decline in wheat production. Cytoplasmic glyceraldehyde-3-phosphate dehydrogenase (GAPC) is an important member of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) family, which is widely present in plant cytoplasm. Plants play an important role in the process of primary metabolism and stress resistance.Result: In this study, a comparative transcriptomic analysis of the TaGAPCs-RNAi strain of Changwu 134 and the wild-type wheat seedlings of Changwu 134 under natural drought conditions was carried out. A total of 30067 differentially expressed genes were screened in RNAi strains and wild-type strains, of which 19,959 genes were up-regulated in RNAi strains and 10,108 genes were down-regulated in transcription. GO analysis shows that differential genes are mainly enriched in biological regulation, cellular processes, metabolic processes, and responses to stimuli. KEGG analysis showed that the differential genes were mainly concentrated in the biosynthesis of phenylpropane, plant hormone signal transduction and flavonoid biosynthesis pathways. By analyzing the expression levels of differential transcription factors, the significantly down-regulated transcription factor WRKY family member TaWRKY2 / 22/28/29/33/40/47/52 in wheat was screened out. The TaWRKY28/33/40/47 gene silencing line was successfully obtained using the barley stripe mosaic virus (BSMV-VIGS) technology. The plants with TaWRKY28/33/40/47 gene silenced were subjected to natural drought treatment, and physiological and biochemical index tests were carried out. The results showed that the growth status of gene-silenced plants was worse than that of wild-type plants, and the relative water content and chlorophyll content decreased. The content of MDA, H2O2 and superoxide anion increases, the activity of antioxidant enzymes (SOD, POD, CAT) decreases, and the content of proline decreases. Conclusion: The results showed that TaGAPCs regulates the expression of some TaWRKYs transcription factors, activates antioxidant pathways, enhances tolerance of wheat to drought stress.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Author(s):  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.


2021 ◽  
Vol 937 (2) ◽  
pp. 022117
Author(s):  
V Golubova ◽  
V Gaze ◽  
I Lobunskaya

Abstract The article discusses the impact of severe drought on the growth and development of winter wheat plants. The studies were carried out in 2018-2020. As a starting material, we used 57 samples of winter soft wheat bred by ARC “Donskoy”. The studies were carried out under laboratory and vegetation methods. According to the analysis, it was revealed that the highest values of the index of complex resistance were shown by the samples: intensive type - 1630/17 (282.8 rel.units), 2078/16 (265.1 rel.units), 1990/17 (265, 0 rel.units); semi-intensive type -1727/17 (260.6 rel. units), 2243/17 (258.6 rel. units), 522/16 (252.8 rel. units). The maximum value of the degree of drought resistance of samples of the intensive type was noted for lines 2243/17 (92.4%), 1727/17 (84.9%), and 522/16 (82.6%). Among 36 samples of winter soft wheat of intensive type, high drought resistance was noted in 67% (24 samples) with germination from 71.6 (Univer) to 92.9% (1630/17). High values of heat resistance (I-81-100% of germination) out of 57 studied samples of winter wheat were noted in 56 genotypes, the indicators of which ranged from 85.1% (1181/16) to 98% (Zodiac, 1166/15, 1275/16). The highest grain yield under model drought conditions was noted for winter wheat varieties Zodiac (332.86 g/m2), Premiera (332.48 g/m2) and Podarok Krymu (317.50 g/m2), which is higher than the yield of the Ascet classifier (292.97 g/m2) by 8.0-13.7%..


2021 ◽  
Vol 13 (19) ◽  
pp. 11007
Author(s):  
Syeda Fasiha Amjad ◽  
Nida Mansoora ◽  
Israr Ud Din ◽  
Rana Khalid Iqbal ◽  
Ghulam Hussain Jatoi ◽  
...  

Drought stress and poor zinc (Zn) are major constraints for commercial agriculture. Their detrimental effects significantly decrease crop’s growth and yield. Less water uptake disturbs the metabolic processes in plants. However, the deficiency of Zn leads to the inactivation of many enzymes. It is well documented that cereal crops, especially wheat, are susceptible to drought and Zn deficiency. Scientists suggest the supplementation of Zn along bio-fertilizers for the sustainable management of these issues. That is why the current experiment was conducted to explore the best combination of Zn and bio-fertilizer for wheat. There were two different recommended concentrations of Zn sulfate (Zinc level 1 (Zn1) = 20 and Zinc level 2 (Zn2) = 40 kg ha−1) applied under normal irrigation (75% field capacity = FC) and severe drought stress (40% FC). Sole and combined inoculation of arbuscular mycorrhizal fungi (AM) with Zn1 and Zn2 was also performed. Osmotic stress (40% FC) significantly decreased the examined growth parameters. It also significantly enhanced antioxidant and oxidative indicators in wheat. A significant increase in root fresh weight, root dry weight, and shoot length while a significant decrease in EL, SOD, POD over the control validated the efficacious role of Zn2 + AM. It is concluded that Zn2 + AM can improve wheat root fresh weight and root length wheat under 40% FC. Under different climatic zones, wheat varieties, and soil types, more investigations are recommended to declare Zn2 + AM as the best amendment for improving wheat growth attributes under osmotic stress.


2013 ◽  
Vol 61 (3) ◽  
pp. 175-183
Author(s):  
B. Varga ◽  
S. Bencze ◽  
T. Janda ◽  
O. Veisz

The impacts of climate modification were examined in terms of changes in the stress tolerance of winter wheat varieties. The enzyme reactions of two winter wheat varieties to drought stress, simulated by water withholding in three different phenophases, were analysed in a phytotron experiment in the Centre for Agricultural Research, Hungarian Academy of Sciences. Plants were raised either at ambient CO2 level or at twice this concentration. The quantities of glutathione reductase (GR), glutathione-S-transferase (GST), catalase (CAT), guaiacol peroxidase (POD) and ascorbate peroxidase (APX) were determined from leaf samples collected at the end of the drought treatment.The results showed that antioxidant enzymes may help to counterbalance the reactive oxygen species induced by stress during various stages of the vegetation period. Although there were substantial differences in the changes induced in the activity of individual enzymes by modifications in environmental factors, this activity and its response to stress depended not only on these factors, but also on the developmental stage of the plant. Modifications in enzyme activity could indicate that enhanced CO2 concentration delayed the development of drought stress up to first node appearance, and stimulated antioxidant enzyme activity when drought occurred during ripening.


2020 ◽  
pp. 1-10
Author(s):  
Damilola A. Raiyemo ◽  
William J. Price ◽  
Traci A. Rauch ◽  
Joan M. Campbell ◽  
Fangming Xiao ◽  
...  

Abstract Annual grass weeds reduce profits of wheat farmers in the Pacific Northwest. The very-long-chain fatty acid elongase (VLCFA)-inhibiting herbicides S-metolachlor and dimethenamid-P could expand options for control of annual grasses but are not registered in wheat, because of crop injury. We evaluated a safener, fluxofenim, applied to wheat seed for protection of 19 soft white winter wheat varieties from S-metolachlor, dimethenamid-P, and pyroxasulfone herbicides; investigated the response of six varieties (UI Sparrow, LWW 15-72223, UI Magic CL+, Brundage 96, UI Castle CL+, and UI Palouse CL+) to incremental doses of fluxofenim; established the fluxofenim dose required to optimally protect the varieties from VLCFA-inhibiting herbicides; and assessed the impact of fluxofenim dose on glutathione S-transferase (GST) activity in three wheat varieties (UI Sparrow, Brundage 96, and UI Castle CL+). Fluxofenim increased the biomass of four varieties treated with S-metolachlor or dimethenamid-P herbicides and one variety treated with pyroxasulfone. Three varieties showed tolerance to the herbicides regardless of the fluxofenim treatment. Estimated fluxofenim doses resulting in 10% biomass reduction of wheat ranged from 0.55 to 1.23 g ai kg−1 seed. Fluxofenim doses resulting in 90% increased biomass after treatment with S-metolachlor, dimethenamid-P, and pyroxasulfone ranged from 0.07 to 0.55, 0.09 to 0.73, and 0.30 to 1.03 g ai kg−1 seed, respectively. Fluxofenim at 0.36 g ai kg−1 seed increased GST activity in UI Castle CL+, UI Sparrow, and Brundage 96 by 58%, 30%, and 38%, respectively. These results suggest fluxofenim would not damage wheat seedlings up to three times the rate labeled for sorghum, and fluxofenim protects soft white winter wheat varieties from S-metolachlor, dimethenamid-P, or pyroxasulfone injury at the herbicide rates evaluated.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael Itam ◽  
Ryosuke Mega ◽  
Shota Tadano ◽  
Mostafa Abdelrahman ◽  
Sachiko Matsunaga ◽  
...  

Abstract Wheat (Tritium aestivum) is vulnerable to future climate change because it is predominantly grown under rain-fed conditions in drought-prone areas. Thus, in-depth understanding of drought effect on wheat metabolism is essential for developing drought-tolerant wheat varieties. Here, we exposed wheat ‘Norin 61’ plants to progressive drought stress [0 (before drought), 2, 4, 6, 8, and 10 days after withholding water] during the flowering stage to investigate physiological and metabolomic responses. Transcriptional analyses of key abscisic acid-responsive genes indicated that abscisic acid signalling played a major role in the adaptation of wheat to water deficit. Carbon isotope composition had a higher value than the control while canopy temperature (CT) increased under drought stress. The CT depression was tightly correlated with soil water potential (SWP). Additionally, SWP at − 517 kPa was identified as the critical point for increasing CT and inducing reactive oxygen species. Metabolome analysis identified four potential drought-responsive biomarkers, the enhancement of nitrogen recycling through purine and pyrimidine metabolism, drought-induced senescence based on 1-aminocyclopropane-1-carboxylic acid and Asn accumulation, and an anti-senescence response through serotonin accumulation under severe drought stress. Our findings provide in-depth insight into molecular, physiological and metabolite changes involved in drought response which are useful for wheat breeding programs to develop drought-tolerant wheat varieties.


2019 ◽  
Vol 20 (22) ◽  
pp. 5777 ◽  
Author(s):  
Li ◽  
Cui ◽  
Sui ◽  
Huang ◽  
Huang ◽  
...  

Although studies have shown the concomitant occurrence of autophagic and programmed cell death (PCD) in plants, the relationship between autophagy and PCD and the factors determining this relationship remain unclear. In this study, seedlings of the wheat cultivar Jimai 22 were used to examine the occurrence of autophagy and PCD during polyethylene glycol (PEG)-8000-induced drought stress. Autophagy and PCD occurred sequentially, with autophagy at a relatively early stage and PCD at a much later stage. These findings suggest that the duration of drought stress determines the occurrence of PCD following autophagy. Furthermore, the addition of 3-methyladenine (3-MA, an autophagy inhibitor) and the knockdown of autophagy-related gene 6 (ATG6) accelerated PEG-8000-induced PCD, respectively, suggesting that inhibition of autophagy also results in PCD under drought stress. Overall, these findings confirm that wheat seedlings undergo autophagic survival under mild drought stress, with subsequent PCD only under severe drought.


Sign in / Sign up

Export Citation Format

Share Document