scholarly journals Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat and Drought Stresses

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 227 ◽  
Author(s):  
Perera ◽  
Cullen ◽  
Eckard

Heat and drought are two major limiting factors for perennial pasture production in south eastern Australia. Although previous studies have focused on the effects of prolonged heat and drought stresses on pasture growth and physiology, the effects of short term recurring combined heat and drought stresses and the recovery from them have not been studied in detail. A controlled environment experiment was conducted to investigate the growth and physiological responses of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.) plants exposed to two consecutive seven day heat (control = 25/15 °C day/night; moderate = 30/20 °C day/night and severe = 35/30 °C day/night) and/or drought stresses each followed by a seven day recovery period. During the first moderate and severe heat and drought treatments, maximum photochemical efficiency of photosystem II (Fv/Fm), cell membrane permeability and relative leaf water content decreased in chicory and tall fescue compared to perennial ryegrass and cocksfoot. However, during the second moderate heat and drought treatment, all species showed less reduction in the same parameters suggesting that these species acclimated to consecutive moderate heat and drought stresses. Chicory was the only species that was not affected by the second severe heat and drought stress while physiological parameters of all grass species were reduced closer to minimum values. Irrigation mitigated the negative effects of heat stress by cooling the canopies 1–3 °C below air temperatures with the most cooling observed in chicory. All the species exposed to moderate heat and drought were fully recovered and those exposed to severe heat and drought recovered partially at the end of the experiment. These findings suggest that chicory may be a potential species for areas subject to frequent heat and drought stress.

2019 ◽  
Vol 70 (2) ◽  
pp. 169 ◽  
Author(s):  
Adam D. Langworthy ◽  
Richard P. Rawnsley ◽  
Mark J. Freeman ◽  
Ross Corkrey ◽  
Keith G. Pembleton ◽  
...  

The profitability of dairying in south-eastern Australia can be improved by increasing pasture production during summer–autumn, when growth rates for the existing perennial ryegrass (Lolium perenne L.) feedbase are low. A study undertaken in cool-temperate north-west Tasmania examined the effect of stubble height and irrigation management on swards of perennial ryegrass, continental (summer-active) tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.). Irrigation treatments included full irrigation (~20mm applied at every 20mm precipitation deficit), deficit irrigation (~20mm applied at alternate full-irrigation events) and rainfed (no irrigation). All species achieved greater summer–autumn yields when repeatedly defoliated to stubble heights of 35 or 55mm than when defoliated to 115mm, irrespective of irrigation treatment. Swards were managed under a common defoliation schedule of nine defoliation events in 12 months. Under full irrigation, second-year tall fescue achieved a greater summer–autumn yield than perennial ryegrass (by 10%, or 0.7 t DM ha–1), highlighting the potential role of tall fescue in north-west Tasmania. This was further demonstrated by the high marginal irrigation water-use index values (1.6–2.7 t DM ML–1) of tall fescue. By contrast, summer–autumn growth achieved by chicory was less than or equal to perennial ryegrass.


HortScience ◽  
1999 ◽  
Vol 34 (5) ◽  
pp. 897-901 ◽  
Author(s):  
Bingru Huang ◽  
Hongwen Gao

Drought is among the most limiting factors for turfgrass growth. Understanding genetic variations and physiological mechanisms in turfgrass drought resistance would facilitate breeding and management programs to improve drought resistance. The experiment was designed to investigate shoot physiological responses of six tall fescue (Festuca arundinacea Schreb.) cultivars representing several generations of turfgrass improvement to drought stress. Grasses were grown in well-watered or drying (nonirrigated) soil for 35 days in the greenhouse. Net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), relative water content (RWC), and photochemical efficiency (Fv/Fm) declined during drought progression in all cultivars, but the time and the severity of reductions varied with cultivar and physiological factors. The values of Pn, RWC, gs, and Tr decreased significantly for `Rebel Jr', `Bonsai', and `Phoenix' when soil water content declined to 20% after 9 days of treatment (DOT) and for `Houndog V', `Kentucky-31', and `Falcon II' when soil water content dropped to 10% at 15 DOT. A significant decrease in Fv/Fm was not observed in drought-stressed plants until 21 DOT for `Rebel Jr', `Bonsai', and `Phoenix' and 28 DOT for `Houndog V', `Kentucky-31', and `Falcon II'. The decline in Pn resulted mainly from internal water deficit and stomatal closure under mild drought-stress conditions. After a prolonged period of drought stress (35 DOT), `Falcon II', `Houndog V', and `Kentucky-31' maintained higher Pn than did `Rebel Jr', `Bonsai', and `Phoenix', which could be attributed to their higher Fv/Fm. This study demonstrated variation in drought resistance among tall fescue cultivars, which was related to their differential responses in photosynthetic capacity and water relations.


2018 ◽  
Vol 143 (3) ◽  
pp. 207-212
Author(s):  
Jianming Sun ◽  
Yiming Liu ◽  
Xianglin Li ◽  
Bingru Huang

Protein metabolism plays an important role in plant adaptation to drought stress. The objective of this study was to identify drought-responsive proteins associated with differential drought tolerance for a tolerant genotype (RU9) and a sensitive genotype (RU18) of tall fescue (Lolium arundinacea). Plants of both genotypes were grown under well-watered conditions or subjected to drought stress by withholding irrigation for 12 days in a growth chamber controlled at the optimal growth temperatures of 23/18 °C (day/night). Physiological analysis demonstrated that RU9 was relatively more drought tolerant than RU18, as shown by the higher leaf net photosynthetic rate (Pn) and photochemical efficiency at 12 days of drought treatment. Differentially expressed proteins between RU9 and RU18 exposed to drought stress were identified by two-dimensional electrophoresis and mass spectrometry (MS). Several proteins [photosystem I reaction center subunit II, Rubisco small subunit, and Glyceraldehyde-3-phosphate dehydrogenase (GADPH)] in photosynthesis, respiration, or oxidative regulation exhibited higher abundance in RU9 than RU18 under drought stress. These results suggested the critical importance of energy and oxidative metabolism in tall fescue adaptation to drought stress. Those abundant proteins in the drought-tolerant genotype could be used as biomarkers or developed to molecular markers to develop elite drought-tolerant germplasm in tall fescue and other cool-season perennial grass species.


2019 ◽  
Vol 70 (2) ◽  
pp. 183 ◽  
Author(s):  
Adam D. Langworthy ◽  
Richard P. Rawnsley ◽  
Mark J. Freeman ◽  
Ross Corkrey ◽  
Matthew T. Harrison ◽  
...  

Defoliating pasture to shorter stubble heights (height above the soil surface) may increase temperature at the plant crown (plant–soil interface). This is especially relevant to summer C3 pasture production in parts of south-eastern Australia, where above-optimal ambient temperatures (≥30°C) are often recorded. A rainfed field experiment in north-west Tasmania, Australia, quantified the effect of stubble-height management on the upper distribution of crown temperatures (90th and 75th percentiles) experienced by three pasture species: perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea Schreb.; syn. Schedonorus arundinaceus (Schreb.) Dumort.; syn. L. arundinaceum (Schreb.) Darbysh.), and chicory (Cichorium intybus L.). Three stubble-height treatment levels were evaluated: 35, 55 and 115mm. Defoliation to shorter stubble heights (35 or 55mm cf. 115mm) increased the crown temperature of all species in the subsequent regrowth cycle (period between successive defoliation events). In the second summer, defoliating to shorter stubble heights increased the 90th percentile of crown temperature by an average of 4.2°C for perennial ryegrass, 3.6°C for tall fescue and 1.8°C for chicory. Chicory and second-year tall fescue swards experienced less-extreme crown temperatures than perennial ryegrass. This may partly explain why these two species often outyield perennial ryegrass in hotter summer environments than north-west Tasmania, and hence the increasing interest in their use.


2021 ◽  
Vol 17 ◽  
Author(s):  
Marcus Talamini Junior ◽  
Shirin Sharifiamina ◽  
Elsa Axelle David ◽  
Annamaria Mills ◽  
Derrick Jan Moot

Nitrogen (N) and water availability affect pasture production and persistence. Yield and botanical composition of four monocultures of brome (BR), cocksfoot (CF), perennial ryegrass (RG) and tall fescue (TF) were evaluated with (+N) or without (-N) N at Ashley Dene farm, Canterbury, over six growth seasons from establishment in 2014/15 (Year 1) to 2019/20 (Year 6). Total annual yields ranged from 2.04 (RG-N; Year 1) to 12.7 t DM/ha/yr (CF+N; Year 3). Yields differed among species in Years 1, 3, 4 and 6 when TF pastures had the lowest production. There was no difference in DM production from BR, CF and RG pastures. Additionally, +N pastures produced ~55% more yield than –N pastures in Years 3 and 5 when spring/summer rainfall was adequate to maintain growth. Sown grasses accounted for >89% of total DM yield in Years 1 and 2 but the proportion of total annual DM production from sown species declined from Year 3. By Year 6, sown species accounted for 48±3.3 (TF) to 64±3.3% (BR, CF and RG) of total annual DM production. Generally, TF failed to perform in this dryland environment. In contrast, the production and persistence of the other three species were not different when subjected to water deficits alone.


2017 ◽  
Vol 111 ◽  
pp. 129-143 ◽  
Author(s):  
Mohammad Hossein Sheikh Mohammadi ◽  
Nematollah Etemadi ◽  
Mohammad Mehdi Arab ◽  
Mostafa Aalifar ◽  
Mostafa Arab ◽  
...  

1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


2011 ◽  
Vol 15 ◽  
pp. 157-162
Author(s):  
G.D. Milne

Recent discussion about pasture persistence concentrates on pastures based on perennial ryegrass, the most commonly used grass species. This paper raises the question as to whether some of the causes of poor pasture persistence are due to perennial ryegrass being used in environments to which it is not suited. The adaptation to environmental stresses, particularly water, temperature and nutrient deficiencies, in different regions of New Zealand of tall fescue, cocksfoot, phalaris, and lucerne are discussed, and how this impacts on persistence advantages over perennial ryegrass. Keywords: persistence, pasture, Dactylis glomerata, Festuca arundinacea, Lolium perenne, Medicago sativa, Phalaris aquatica


2021 ◽  
Vol 17 ◽  
Author(s):  
Tom Maxwell ◽  
Grant Edwards ◽  
Katherine Tozer ◽  
Gerald Cosgrove

Persistence is an important component of perennial pasture-grass productivity. Defining traits that affect persistence is essential for improving pasture longevity through plant breeding and for identifying persistence traits that should be included in cultivar ranking indices. Compared with conventional longitudinal studies, where a single sowing is monitored over time, repeated annual sowings allow the effects on persistence of sowing year and the ensuing interactions between environment and age of pasture to be identified. An experiment was commenced in 2015 under sheep grazing in Canterbury and in 2016 under cattle grazing in Waikato, where eight cultivars of perennial ryegrass representing different ploidy, flowering date, and cultivar age (release date), and one cultivar each of tall fescue and cocksfoot were sown in four randomised complete blocks in autumn each year. This paper reports interim data on spring and autumn pasture yield, composition, and density of 3-year-old, 2-year-old and 1-year-old pastures exposed to the same environmental conditions within the same, single year. There were significant effects on yield, botanical composition, basal cover and tiller density due to cultivar, pasture age, and their interaction. When the confounding effect of year-to-year variation was removed by comparing each age cohort in the same year, the underlying differences among grass species and cultivars, and ages of pasture, is starting to reveal the nature of this influence on pasture persistence.


1979 ◽  
Vol 93 (1) ◽  
pp. 13-24 ◽  
Author(s):  
E. A. Garwood ◽  
K. C. Tyson ◽  
J. Sinclair

SUMMARYThe yield and quality of herbage produced by six grasses (perennial ryegrass, cocksfoot, timothy, rough-stalked meadow grass, tall fescue and Italian ryegrass) were examined both without irrigation and under two irrigation regimes. Water was applied according to the potential soil water deficit (potential SWD): the soil was either partially returned to field capacity (FC) after each cut or fully returned to FC whenever the potential SWD reached 25 mm. The swards were cut either at 3 (C3) or 6 (C6) week intervals over a 2 year period.Partial irrigation increased yields by 12–14% in the first year and by 36–58% in the second. Full irrigation produced little more growth than partial irrigation in the first year (maximum SWD, 188 mm) but increased yield by 78–93% in the second, very dry, year (maximum SWD, 311 mm). Under treatment C3 response per unit of water applied was similar with both partial and full irrigation, but under C6 the response was greater with partial (2·86 kg D.M./m3) than with full irrigation (1·79 kg D.M./m3).There were marked differences between the species in their ability to grow under drought conditions in the second year of the experiment. Without irrigation, roughstalked meadow grass and Italian ryegrass did not survive the drought. The performance of tall fescue was markedly superior to both perennial ryegrass and cocksfoot in these conditions. Of the surviving grasses timothy made least growth.


Sign in / Sign up

Export Citation Format

Share Document