scholarly journals Intra-Sample Heterogeneity of Potato Starch Reveals Fluctuation of Starch-Binding Proteins According to Granule Morphology

Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 324
Author(s):  
Stanislas Helle ◽  
Fabrice Bray ◽  
Jean-Luc Putaux ◽  
Jérémy Verbeke ◽  
Stéphanie Flament ◽  
...  

Starch granule morphology is highly variable depending on the botanical origin. Moreover, all investigated plant species display intra-tissular variability of granule size. In potato tubers, the size distribution of starch granules follows a unimodal pattern with diameters ranging from 5 to 100 µm. Several evidences indicate that granule morphology in plants is related to the complex starch metabolic pathway. However, the intra-sample variability of starch-binding metabolic proteins remains unknown. Here, we report on the molecular characterization of size-fractionated potato starch granules with average diameters of 14.2 ± 3.7 µm, 24.5 ± 6.5 µm, 47.7 ± 12.8 µm, and 61.8 ± 17.4 µm. In addition to changes in the phosphate contents as well as small differences in the amylopectin structure, we found that the starch-binding protein stoichiometry varies significantly according to granule size. Label-free quantitative proteomics of each granule fraction revealed that individual proteins can be grouped according to four distinct abundance patterns. This study corroborates that the starch proteome may influence starch granule growth and architecture and opens up new perspectives in understanding the dynamics of starch biosynthesis.

2012 ◽  
Vol 550-553 ◽  
pp. 1513-1521
Author(s):  
Sirirat Thothong ◽  
Klanarong Sriroth ◽  
Rattana Tantatherdtam ◽  
Amnat Jarerat

To improve the miscibility of native rice starch granules and poly(butylene adipate-co-terephthalate)(PBAT), rice starch was hydrolyzed by a mixture of α-amylase and amyloglucosidase. The obtained porous rice granular starch was then mechanically blended with PBAT by single screw extruder. Many pits and holes on the surface of starch granules were observed by scanning electron microscopy (SEM). The rough surface of the rice starch granules improved the compatibility of the polymers in the blends, which consequently increased the tensile strength and the elongation at break. In addition, SEM also revealed that the porous granules were homogeneously distributed in the polymer matrix with no appearance of gaps.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5859
Author(s):  
Qingting Liu ◽  
Yuan Zhou ◽  
Joerg Fettke

Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.


2019 ◽  
Vol 71 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Tansy Chia ◽  
Marcella Chirico ◽  
Rob King ◽  
Ricardo Ramirez-Gonzalez ◽  
Benedetta Saccomanno ◽  
...  

Abstract In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 626 ◽  
Author(s):  
NingNing Xu ◽  
DiMing Wang ◽  
JianXin Liu

The current study investigated differences of γ-zein protein contents and starch granule characteristics between raw and steam flaked corns and their influences on ruminal starch hydrolyzing bacteria (SHB) attached to corn grain. Two types of raw (Corn1 and Corn2) and their steam-flaked products (SFCorn1 and SFCorn2) were applied to explore physiochemical structures and SHB attachment. SDS-PAGE was conducted to detect γ-zein protein patterns, scanning electron microscope, and small angle X-ray scattering were performed to obtain starch granule morphology, while crystallinity, DQ starch, and DAPI staining were applied to quantify SHB. The steam flaking process destroyed γ-zein proteins and gelatinized starch granules. The median particle size of Corn1 and Corn2 starch granules increased from 17.8 and 18.0 μm to 30.8 and 26.0 μm, but crystallinity decreased from 22.0 and 25.0% to 9.9 and 16.9%, respectively. The percentage of SHB attached to Corn1 residues decreased (p = 0.01) after 4 h incubation, but SHB attached to SFCorn1 residues increased (p = 0.03) after 12 h incubation. Thus, the differences of γ-zein proteins and starch granule physiochemical structures between raw and steam flaked corn played an important role in improving the rate and extent of starch ruminal degradation through altering the process of SHB attached to corn.


Author(s):  
Pierre Désiré Mbougueng ◽  
Tenin Dzudie ◽  
Joel Scher ◽  
Tchiégang Clergé

In this study, starches were extracted from two cultivars of local Irish potatos (Solanum tuberosum,) and tree cultivars of local Cassava (Manihot esculanta). These starches and a commercial Irish potato starch (IPS), where characterized with respect to their physico-chemical and functional properties. Significant differences (P<0.05) were observed among starches as far as their proximate composition were concerned. The commercial starch showed the highest phosphorus content. The amylose content was observed to be significantly lower (P<0.05) in the cassava starches than in the local Irish potato starches. The highest (P<0.05) gelatinisation parameters were those of 2425 starch cultivar. Potato starch granules exhibited the largest granule size at 10, 50 and 90% diameter compared to those of cassava starches. Potato starches had wider particle size distribution compared to cassava starches. There were apparent differences, between species (Cassava and potatoes) with respect to granule morphology and size. No significant colour difference (P>0.05) was observed between the Sipiera starch cultivars and the Irish potatoes commercial starch.


2002 ◽  
Vol 277 (13) ◽  
pp. 10834-10841 ◽  
Author(s):  
Daniel C. Fulton ◽  
Anne Edwards ◽  
Emma Pilling ◽  
Helen L. Robinson ◽  
Brendan Fahy ◽  
...  

2011 ◽  
Vol 150 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Y. NI ◽  
Z. WANG ◽  
Y. YIN ◽  
W. LI ◽  
S. YAN ◽  
...  

SUMMARYStarch granule size distribution of wheat is an important characteristic that can affect its chemical composition and functionality. Phosphorus (P) fertilization has been studied extensively; however, little is known about its impact on starch granule size distribution in wheat. In the present study, two high-yield winter wheat cultivars were grown under different P fertilization conditions to evaluate its effect on starch granule size distribution and starch components in wheat grains at maturity. P fertilization resulted in a significant increase in the proportions (both by volume and by surface area) of B-type (<9·9 μm equivalent diameter (e.d.)) starch granules, with a reduction in those of A-type (>9·9 μm e.d.) starch granules. The P fertilization also increased starch content, amylose content and amylopectin content at maturity. However, P fertilization conditions significantly reduced the ratio of amylose to amylopectin, which showed a significant positive relationship with the volume proportion of granules 22·8–42·8 μm e.d. but was negatively related to the volume proportion of granules 2·8–9·9 μm e.d.


2011 ◽  
Vol 2 (1) ◽  
pp. 5 ◽  
Author(s):  
Xiu-Qing Li ◽  
Jichong Zhang ◽  
Sainan Luo ◽  
Gongshe Liu ◽  
Agnes Murphy ◽  
...  

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:UseFELayout /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--><!--[if !mso]><object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object> <mce:style><! st1\:*{behavior:url(#ieooui) } --> <!--[endif]--><!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif]--> <p class="MsoNormal"><span style="font-family: Cambria;">Light-microscopic measurement of starch granule size is the preferred approach in most laboratories because it is simple, rapid and visual and because it can study both size and shape. However, potato juice consists of starch granules with very different sizes and precipitation/movement speeds, which causes differences when sampling the juice and taking the microscopic images. The previously described method is to scrape and transfer some juice from potatoes using a razor blade directly to a slide with some water for microscopic observation. In this study we used a tape-hole chamber on the microscopic slide to reduce the cover-slip-induced shifting of small and medium granules. We improved the starch measurement reproducibility by testing various juice sampling methods. The reproducibility between repeated experiments using 10 cultivars was increased from a correlation efficient r = 0.815 in the razor-blade-scraping method to r = 0.923 in a squeezing-juice method.<span> </span>The largest starch granule detected was 151 µm in length.<span> </span>Sampling methods (using a razor-blade or a garlic press) strongly influenced the granule length values measured from the same potato tuber. The results indicated that 1) The squeezing-juice approach is more reproducible, and 2) The average length of starch granules is one of the most reproducible scores but varies according to juice-sampling methods.</span></p>


Sign in / Sign up

Export Citation Format

Share Document