scholarly journals Withaninsams A and B: Phenylpropanoid Esters from the Roots of Indian Ginseng (Withania somnifera)

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 527 ◽  
Author(s):  
Su Cheol Baek ◽  
Seoyoung Lee ◽  
Sil Kim ◽  
Mun Seok Jo ◽  
Jae Sik Yu ◽  
...  

Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha, has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and reproductive and nervous system disorders. It is particularly used as a general health tonic, analgesic, and sedative. As part of continuing projects to discover unique bioactive natural products from medicinal plants, phytochemical investigation of the roots of W. somnifera combined with a liquid chromatography–mass spectrometry (LC/MS)-based analysis has led to the isolation of two novel phenylpropanoid esters, Withaninsams A (1) and B (2), as an inseparable mixture, along with three known phenolic compounds (3, 4, and 6) and a pyrazole alkaloid (5). The structures of the new compounds were elucidated using a combination of spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HR-ESIMS). Withaninsams A (1) and B (2) are phenylpropanoid esters that contain a side chain, 4-methyl-1,4-pentanediol unit. To the best of our knowledge, the present study is the first to report on phenylpropanoid esters with 4-methyl-1,4-pentanediol unit. The anti-inflammatory activity of the isolated compounds (1–6) was evaluated by determining their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, where compound 3 inhibited LPS-induced NO production (IC50 = 33.3 μM) and TNF-α production, a pro-inflammatory cytokine (IC50 = 40.9 μM). The anti-inflammatory mechanism through the inhibition of transcriptional iNOS protein expression was confirmed by western blotting experiments for the active compound 3, which showed decreased iNOS protein expression.

2007 ◽  
Vol 75 (9) ◽  
pp. 4305-4315 ◽  
Author(s):  
Rupesh Chaturvedi ◽  
Mohammad Asim ◽  
Nuruddeen D. Lewis ◽  
Holly M. Scott Algood ◽  
Timothy L. Cover ◽  
...  

ABSTRACT Helicobacter pylori infection of the stomach causes an active immune response that includes stimulation of inducible nitric oxide (NO) synthase (iNOS) expression. Although NO can kill H. pylori, the bacterium persists indefinitely, suggesting that NO production is inadequate. We determined if the NO derived from iNOS in macrophages was dependent on the availability of its substrate, l-arginine (l-Arg). Production of NO by H. pylori-stimulated RAW 264.7 cells was dependent on the l-Arg concentration in the culture medium, and the 50% effective dose for l-Arg was 220 μM, which is above reported plasma l-Arg levels. While iNOS mRNA induction was l-Arg independent, iNOS protein increased in an l-Arg-dependent manner that did not involve changes in iNOS protein degradation. l-Lysine, an inhibitor of l-Arg uptake, attenuated H. pylori-stimulated iNOS protein expression, translation, NO levels, and killing of H. pylori. While l-Arg starvation suppressed global protein translation, at concentrations of l-Arg at which iNOS protein was only minimally expressed in response to H. pylori, global translation was fully restored and eukaryotic translation initiation factor α was dephosphorylated. H. pylori lacking the gene rocF, which codes for a bacterial arginase, induced higher levels of NO production by increasing iNOS protein levels. When murine gastric macrophages were activated with H. pylori, supraphysiologic levels of l-Arg were required to permit iNOS protein expression and NO production. These findings indicate that l-Arg is rate limiting for iNOS translation and suggest that the levels of l-Arg that occur in vivo do not permit sufficient NO generation by the host to kill H. pylori.


2019 ◽  
Vol 20 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Rawan Zeitoun ◽  
Fadia Najjar ◽  
Batoul Wehbi ◽  
Alia Khalil ◽  
Mohammad Fayyad-Kazan ◽  
...  

Background: Propolis is a resinous substance produced by bees and known to possess antioxidant, antimicrobial, antiproliferative and anti-inflammatory activities. Objective: This study is aimed at evaluating the in vivo and in vitro anti-inflammatory potential of the Crude Ethanolic Extract (CE) of Lebanese propolis and its Ethyl Acetate Fraction (EAF). Method: Chemical content of propolis was characterized using high-performance liquid chromatography and LC-MS/MS. COX-2 and iNOS protein expression, nitric oxide (NO) and prostaglandin (PGE2) release in LPS-activated RAW monocytes were achieved respectively by western blot and spectrophotometry. Antioxidant activity was evaluated by DPPH free radical scavenging assay. Measurement of paw thickness in carrageenan-induced paw edema in mice and pathologic assessment of inflammation in paw sections were used to judge the anti-inflammatory properties of propolis. Results: Pathology analysis revealed in the treated group significant reduction of immune cell infiltration and edema. Both extract and ethyl acetate fraction showed significant anti-inflammatory and antioxidant effects in LPS-treated RAW cells characterized by the inhibition of COX-2 and iNOS protein expression, as well as PGE2 and NO release. Chemical analysis of the crude extract and its ethyl acetate fraction identified 28 different compounds of which two phenolic acids and nine other flavonoids were also quantified. Ferulic acid, caffeic acid, chrysin, galangin, quercetin, and pinocembrin were among the most representative compounds. Conclusion: Lebanese propolis is rich in a various amount of flavonoids which showed promising antiinflammatory and antioxidant properties. Additionally, chemical analysis showed unique chemical compositions with the potential of identifying ingredients with interesting anti-inflammatory activities.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10391
Author(s):  
Mona Yasin Mohamed ◽  
Willias Masocha

Indomethacin and other non-steroidal anti-inflammatory drugs (NSAIDs) are used to relieve pain and fever including during infections. However, some studies suggest that NSAIDs protect against neuroinflammation, while some find no effects or worsening of neuroinflammation. We evaluated the effect of indomethacin alone on in combination with minocycline, a drug that inhibits neuroinflammation, on the expression of transcripts of neuroinflammatory molecules-induced by lipopolysaccharide (LPS) in the brain of mice. Inoculation of male BALB/c mice with LPS induced the expression of the microglia marker ionized calcium binding adaptor molecule protein, mRNA expression of the genes for cytokines interleukin-1beta (Il1b) and tumor necrosis factor-alpha (Tnf) and inducible nitric oxide synthase gene (Nos2), but not Il10, in the brain. Treatment with indomethacin had no significant effect on the cytokines or Nos2 mRNA expression in naïve animals. However, pretreatment with indomethacin increased LPS-induced Nos2 mRNA and inducible nitric oxide (iNOS) protein expression, but had no significant effect on LPS-induced mRNA expression of the cytokines. Minocycline reduced LPS-induced Il1b and Tnf, but not Nos2, mRNA expression. Treatment with indomethacin plus minocycline had no effect on LPS-induced Il1b, Tnf and Nos2 mRNA expression. In conclusion these results show that indomethacin significantly augments LPS-induced Nos2 mRNA and iNOS protein expression in the brain. In the presence of indomethacin, minocycline could not inhibit LPS-induced pro-inflammatory cytokine expression. Thus, indomethacin could exacerbate neuroinflammation by increasing the expression of iNOS and also block the anti-inflammatory effects of minocycline.


2021 ◽  
Vol 9 (8) ◽  
pp. 1778-1788
Author(s):  
Bargale Sushant Sukumar

Ayurveda is successfully implemented as a primary healthcare system in India, and it is flourishing in the promotion of health around the world. Ayurveda aims to create a society happily, healthy, and peaceful. In general, the simple regimes mentioned in Ayurveda texts are of immense use faced by the present world today regarding health pro- motion. Ashwagandha (Withania Somnifera) is usually referred to as 'Indian winter cherry' or 'Indian Ginseng'. It is a shrub grown in India and North America whose roots have been used by Ayurvedic practitioners for thousands of years. Ashwagandha is one of Ayurveda's most essential herbs, used as Rasayana for its wide range of health benefits for centuries. Chemicals constitute of Ashwagandha (Withania Somnifera)- The chemistry of Ashwagan- dha (Withania Somnifera) has been widely studied and numerous categories of chemical constituents have been described, extracted, and isolated, such as steroidal lactones, alkaloids, flavonoids, tannin, etc. More than 12 alka- loids, 40 withanolides and several sitoindosides have currently been isolated from the aerial parts, roots, and berries of the Withania species and have been recorded. The principal biochemical element of Ashwagandha (WS) root is withanolides, which are steroidal alkaloids and steroidal lactones. The pharmacological activity of Ashwagan- dha- It has been shown to have pharmacological importance as an Adaptogen, Antibiotic, abortifacient, aphrodisiac, Astringent, Anti-inflammatory, deobstructive, diuretic, narcotic, sedative, and tonic through centuries of Ayurvedic medicinal practice using Ashwagandha (Withania Somnifera). Along with these Ashwagandha acts as Anti-stress,Anticarcinogenic activity, Anti-inflammatory activity, Anti-aging activity, Cardioprotective activity, hypothyroid activity and Immunomodulatory activity. Keywords: Ashwagandha, Withania Somnifera, Alkaloids, Withanoids, sitoindosides


2020 ◽  
Vol 15 (6) ◽  
pp. 427-436
Author(s):  
Jin Yang ◽  
Junhao Zhu ◽  
Timothy Kudinha ◽  
Fanrong Kong ◽  
Qiang-qiang Zhang

Aim: We investigated the interactions between macrophage and different strains of Prototheca. Materials & method: J774A.1 macrophages were infected with clinical isolates of Prototheca ciferrii 18125 and P. ciferrii 50779 and environmental isolate of  P. ciferrii N71. Phagocytosis activities were compared by colony-forming unit assays at 3, 6 and 9 h after infection. Cytokine levels were detected by RT-PCR and ELISA. iNOS protein expression was examined by western blotting. Results: All P. ciferrii strains were phagocytized by macrophages but induced different levels of cytokines in macrophages. Moreover, infected by  P. ciferrii N71 upregulated much higher iNOS protein expression in J774A.1 than that infected by the clinical strains. Conclusion: Clinical and environmental P. ciferrii strains show differences in their interactions with macrophages, which may be attributed to their virulence.


2003 ◽  
Vol 313 (1) ◽  
pp. 63-70 ◽  
Author(s):  
M. Liang ◽  
E. Ekblad ◽  
M.-L. Lydrup ◽  
B.-O. Nilsson

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhen Ding ◽  
Dai Ogata ◽  
Jason Roszik ◽  
Yong Qin ◽  
Sun-Hee Kim ◽  
...  

We previously showed that inducible nitric oxide synthase (iNOS) protein expression in melanoma tumor cells is associated with poor patient prognosis. Here, we analyzed the association between iNOS and the oncogenic PI3K-AKT pathway. TCGA data show that iNOS and phospho-Akt Ser473 expression were associated significantly only in the subset of tumors with genetically intact PTEN. Employing a stage III melanoma TMA, we showed that iNOS protein presence is significantly associated with shorter survival only in tumors with PTEN protein expression. These findings led to our hypothesis that the iNOS product, nitric oxide (NO), suppresses the function of PTEN and stimulates PI3K-Akt activation. Melanoma cells in response to NO exposure in vitro exhibited enhanced AKT kinase activity and substrate phosphorylation, as well as attenuated PTEN phosphatase activity. Biochemical analysis showed that NO exposure resulted in a post-translationally modified S-Nitrosylation (SNO) PTEN, which was also found in cells expressing iNOS. Our findings provide evidence that NO-rich cancers may exhibit AKT activation due to post-translational inactivation of PTEN. This unique activation of oncogenic pathway under nitrosative stress may contribute to the pathogenesis of iNOS in melanoma. Significance: Our study shows that iNOS expression is associated with increased PI3K-AKT signaling and worse clinical outcomes in melanoma patients with wt (intact) PTEN. Mutated PTEN is already inactivated. We also demonstrate that NO activates the PI3K-AKT pathway by suppressing PTEN suppressor function concurrent with the formation of PTEN-SNO. This discovery provides insight into the consequences of inflammatory NO produced in human melanoma and microenvironmental cells. It suggests that NO–driven modification provides a marker of PTEN inactivation, and represents a plausible mechanism of tumor suppressor inactivation in iNOS expressing subset of cancers.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Meng Wang ◽  
Jielin Deng ◽  
Huanzhu Lai ◽  
Yanqiu Lai ◽  
Guannan Meng ◽  
...  

Objective. In renal ischemia/reperfusion injury (RIRI), nuclear factor κB (NF-κB) initiates the expression of multiple genes involved in inflammatory disease. Inhibition of NF-κB-mediated inducible nitric oxide synthase (iNOS) expression can ameliorate RIRI. Vagus nerve stimulation (VNS) protects against various organs I/R injury. The present study was designed to elucidate the protective effect of VNS on RIRI and its influence on iNOS protein expression. Methods. Eighteen male Sprague-Dawley rats were randomly allocated into the sham group, the I/R group, and the VNS+I/R group, 6 rats per group. An RIRI model was induced by a right nephrectomy and blockade of the left renal pedicle vessels for 45 min. After 6 h of reperfusion, the blood samples and renal samples were collected. The VNS treatment was performed throughout the I/R process in the VNS+I/R group using specific parameters (20 Hz, 0.1 ms in duration, square waves) known to produce a small but reliable bradycardia. Blood was used for evaluation of renal function and inflammatory state. Renal injury was evaluated via TUNEL staining. Renal samples were harvested to evaluate renal oxidative stress, NF-κB p65 levels, and iNOS protein expression. Results. The VNS treatment reduces serum creatinine (Cr) and blood urea nitrogen (BUN) levels. Simultaneously, the levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1-beta (IL-1β) were significantly increased in the I/R group, but VNS treatment markedly ameliorated this inflammatory response. Furthermore, the VNS ameliorated oxidant stress and renal injury, indicated by a decrease in 3-nitrotyrosine (3-NT) formation and MDA and MPO levels and an increase in the SOD level compared to that in the I/R group. Finally, the VNS also significantly decreases NF-κB p65, iNOS, and nitrite/nitrate levels compared to that in the I/R group. Conclusion. Our findings indicate that NF-κB activation increased iNOS expression and promoted RIRI and that VNS treatment attenuated RIRI by inhibiting iNOS expression, oxidative stress, and inflammation via NF-κB inactivation.


Sign in / Sign up

Export Citation Format

Share Document