scholarly journals Advances in Plant Regeneration: Shake, Rattle and Roll

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 897 ◽  
Author(s):  
Sergio Ibáñez ◽  
Elena Carneros ◽  
Pilar S. Testillano ◽  
José Manuel Pérez-Pérez

Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.

1992 ◽  
Vol 70 (6) ◽  
pp. 1186-1192 ◽  
Author(s):  
R. Gill ◽  
Praveen K. Saxena

An efficient procedure has been developed for inducing direct somatic embryogenesis, organogenesis, and regeneration of plants from tissue cultures of peanut (Arachis hypogaea L.). Thin transverse sections of the cotyledons and juvenile leaves were cultured on Murashige and Skoog medium supplemented with N6-benzylaminopurine (BAP) or a substituted phenylurea, thidiazuron (TDZ). Somatic embryos or shoot buds differentiated from cut surfaces of the cotyledons and midrib region of the leaves. The application of BAP induced differentiation of shoot buds whereas the treatment with TDZ resulted in the production of somatic embryos. Somatic embryos developed into plants after subculturing on a basal meduim. Agar-solidified medium was found to be superior to the liquid medium for the development of embryos and shoot buds. The procedure of TDZ-induced somatic embryogenesis and plant regeneration was successfully applied to three genotypes of peanut. A distinct feature of this study is the induction of the morphogenic competence in cultures of seedling expiants of peanut that so far have remained recalcitrant to somatic embryogenesis in vitro. Key words: peanut, Arachis hypogaea, shoot regeneration, somatic embryogenesis, thidiazuron, plant regeneration.


2016 ◽  
Vol 04 (01) ◽  
pp. 4-10

AbstractImmunosuppression permits graft survival after transplantation and consequently a longer and better life. On the other hand, it increases the risk of infection, for instance with cytomegalovirus (CMV). However, the various available immunosuppressive therapies differ in this regard. One of the first clinical trials using de novo everolimus after kidney transplantation [1] already revealed a considerably lower incidence of CMV infection in the everolimus arms than in the mycophenolate mofetil (MMF) arm. This result was repeatedly confirmed in later studies [2–4]. Everolimus is now considered a substance with antiviral properties. This article is based on the expert meeting “Posttransplant CMV infection and the role of immunosuppression”. The expert panel called for a paradigm shift: In a CMV prevention strategy the targeted selection of the immunosuppressive therapy is also a key element. For patients with elevated risk of CMV, mTOR inhibitor-based immunosuppression is advantageous as it is associated with a significantly lower incidence of CMV events.


2020 ◽  
Vol 20 (17) ◽  
pp. 1696-1708 ◽  
Author(s):  
Athirah Hanim ◽  
Isa Naina Mohamed ◽  
Rashidi M. Pakri Mohamed ◽  
Srijit Das ◽  
Norefrina Shafinaz Md Nor ◽  
...  

Alcohol use disorder (AUD) is characterized by compulsive binge alcohol intake, leading to various health and social harms. Protein Kinase C epsilon (PKCε), a specific family of PKC isoenzyme, regulates binge alcohol intake, and potentiates alcohol-related cues. Alcohol via upstream kinases like the mammalian target to rapamycin complex 1 (mTORC1) or 2 (mTORC2), may affect the activities of PKCε or vice versa in AUD. mTORC2 phosphorylates PKCε at hydrophobic and turn motif, and was recently reported to be associated with alcohol-seeking behavior, suggesting the potential role of mTORC2-PKCε interactions in the pathophysiology of AUD. mTORC1 regulates translation of synaptic proteins involved in alcohol-induced plasticity. Hence, in this article, we aimed to review the molecular composition of mTORC1 and mTORC2, drugs targeting PKCε, mTORC1, and mTORC2 in AUD, upstream regulation of mTORC1 and mTORC2 in AUD and downstream cellular mechanisms of mTORCs in the pathogenesis of AUD.


2004 ◽  
Vol 52 (Suppl 1) ◽  
pp. S122.6-S123
Author(s):  
M. Garg ◽  
C. Bell ◽  
L. Rogers ◽  
S. Bassilian ◽  
W. N.P. Lee

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2021 ◽  
Vol 43 (2) ◽  
pp. 767-781
Author(s):  
Vanessa Pinatto Gaspar ◽  
Anelise Cardoso Ramos ◽  
Philippe Cloutier ◽  
José Renato Pattaro Junior ◽  
Francisco Ferreira Duarte Junior ◽  
...  

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein–protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Sign in / Sign up

Export Citation Format

Share Document