scholarly journals Mechanical Properties and Wear Resistance of Sulfonated Graphene/Waterborne Polyurethane Composites Prepared by In Situ Method

Polymers ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 75 ◽  
Author(s):  
Jianyan Feng ◽  
Xuechuan Wang ◽  
Peiying Guo ◽  
Yujie Wang ◽  
Xiaomin Luo
2021 ◽  
Vol 904 ◽  
pp. 226-231
Author(s):  
Guang Lei Lv ◽  
Xin Mei Liu ◽  
Ming Zhao ◽  
Yuan Yuan Li

Modified reduced graphene oxide (rtgo) was prepared by using γ - isocyanate propyl triethoxysilane (IPTS) as modifier. Graphene / polyurethane nanocomposites were prepared by in-situ polymerization. Graphene / polyurethane composites were characterized by scanning electron microscopy, TGA, DIN abrasion and electronic universal testing machine. The effects of different reaction formulations and graphene addition on the wear resistance and mechanical properties of the composites were studied. The results show that the wear resistance and tear resistance of the composite can be greatly improved after the functional graphene is compounded with polyurethane.


2018 ◽  
Vol 5 (4) ◽  
pp. 171775 ◽  
Author(s):  
Hao Liu ◽  
Jianzhang Wang ◽  
Pengfei Jiang ◽  
Fengyuan Yan

The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ . The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.


2021 ◽  
Vol 118 (6) ◽  
pp. 606
Author(s):  
Nandish Girishbhai Soni ◽  
Akash Ganesh Mahajan ◽  
Kaustubh Ramesh Kambale ◽  
Sandeep Prabhakar Butee

Fabrication with the in-situ formation of W2C reinforced medium carbon steel (MCS) MMC’s was attempted using W or WO3 and graphite addition to steel. The P/M route comprising milling, compaction and sintering at 1050 °C and 1120 °C respectively in 90% N2 + 10% H2 atmosphere was adopted. Both SEM and BET studies revealed the particle size to be around 100, 7 and 40 µm for MCS, W and WO3, respectively. A complete conversion of tungsten into tungsten semicarbide (W2C) was noted in XRD for the tungsten additions of ∼6, 9 and 12 wt.% with stoichiometrically balanced C (graphite) addition of 0, 0.2 and 0.4 wt.%. However, WO3 + C addition (balanced as above) revealed the partial conversion of WO3 to W2C. The peaks of Fe3C were observed only for MCS + W + C samples and not for MCS + WO3 + C samples in XRD. In SEM, the WO3 phase appeared porous and partially converted, whereas, W2C phase was dense. Sintered density improved for the addition of W, whereas it monotonically reduced for WO3 addition to MCS + C samples. Higher hardness, compressive strength, and wear resistance was noted for W addition than WO3 to MCS+C samples.


2019 ◽  
Vol 814 ◽  
pp. 90-95 ◽  
Author(s):  
Guang Lei Lv ◽  
Yuan Yuan Li ◽  
Chen Fei ◽  
Zhi Hao Shan ◽  
Jing Gan ◽  
...  

Graphene nanosheets/polyurethane (GNS/PU) was prepared in situ by polymerization technique for the manufacture of PU safety shoes soles. The graphene nanosheets/polyurethane composites were characterized for their mechanical properties, thermal conductivity and abrasion resistance, and comparison is made with those of the neat polyurethane. The microstructural properties of GNS/PU were characterized by SEM. The results show that with the increase of the amount of graphene within the range of weight-percentages analyzed, the tensile strength of the composites gradually increases. The tensile strength of the GNS/PU composites increased to 64.14 MPa with 2 wt% GNS, compared with 55.1 MPa for neat PU. When the graphene sheets reached 2 wt%, the abrasion volume reached 71 mm3. Compared with the pure PU, the wear performance of GNS/PU composites was significantly improved.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1121 ◽  
Author(s):  
Li ◽  
Liang ◽  
Tian ◽  
Yang ◽  
Xie ◽  
...  

Titanium composite strengthened by Ti3Al precipitations is considered to be one of the excellent materials that is widely used in engineering. In this work, we prepared a kind of Ti-Ti3Al metallic composite by in-situ synthesis technology during the SLM (selective laser melting) process, and analyzed its microstructure, wear resistance, microhardness, and compression properties. The results showed that the Ti-Ti3Al composite, prepared by in-situ synthesis technology based on SLM, had more homogeneous Ti3Al-enhanced phase dispersion strengthening structure. The grain size of the workpiece was about 1 μm, and that of the Ti3Al particle was about 200 nm. Granular Ti3Al was precipitated after the aluminum-containing workpiece formed, with a relatively uniform distribution. Regarding the mechanical properties, the hardness (539 HV) and the wear resistance were significantly improved when compared with the Cp-Ti workpiece. The compressive strength of the workpiece increased from 886.32 MPa to 1568 MPa, and the tensile strength of the workpiece increased from 531 MPa to 567 MPa after adding aluminum. In the future, the combination of in-situ synthesis technology and SLM technology can be used to flexibly adjust the properties of Ti-based materials.


2009 ◽  
Vol 631-632 ◽  
pp. 373-378 ◽  
Author(s):  
Shimaa El Hadad ◽  
Hisashi Sato ◽  
P.D. Sequeira ◽  
Yoshimi Watanabe ◽  
Yoshihito Oya-Seimiya

Formation of the compositional gradient in FGMs fabricated by centrifugal casting method depends mainly on the processing temperature and the applied centrifugal force. According to the initial state of the dispersed second phase at the processing temperature, CCM-FGMs can be classified into two categories. One is the FGM fabricated by centrifugal solid-particle method, and the other one is the FGM made by centrifugal in-situ method. In previous study, it has been reported that microstructure of Al-Al3Ti FGMs by centrifugal in-situ method was different from that by centrifugal solid-particle method. However, difference of mechanical property due to processing method is still unclear. In this study, mechanical properties, such as hardness and wear property of Al-Al3Ti FGMs fabricated by centrifugal solid-particle method and in-situ method were evaluated.


2015 ◽  
Vol 7 (32) ◽  
pp. 17874-17883 ◽  
Author(s):  
Kirt A. Page ◽  
Jae Wook Shin ◽  
Scott A. Eastman ◽  
Brandon W. Rowe ◽  
Sangcheol Kim ◽  
...  

Wear ◽  
2011 ◽  
Vol 270 (9-10) ◽  
pp. 640-649 ◽  
Author(s):  
Nicolas Serres ◽  
Françoise Hlawka ◽  
Sophie Costil ◽  
Cécile Langlade ◽  
Frédérique Machi

2014 ◽  
Vol 11 (2) ◽  
pp. 139-146
Author(s):  
Anna Porąbka ◽  
Vasiliki-Maria Archodoulaki ◽  
Wolfgang Molnar ◽  
Jadwiga Laska

Two series of polyurethane matrix composites were prepared. As generally resistant to wear, the PUs can be used as matrices for wear protective and load-bearing composites. The objective of this study was to compare the mechanical properties of composites containing 5% vol. of selected ceramic particles, and unmodified PUs. The effect of various particles on physical and mechanical properties was studied. The results showed that the mechanical properties changed compared to reference materials: modulus improved in certain materials and in different temperatures, revealing the favourable influence of FA and SiO2 particles. In turn, Rm and wear resistance decreased with the type and shape of filler.


Sign in / Sign up

Export Citation Format

Share Document