scholarly journals GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers

Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 802 ◽  
Author(s):  
Soraya Galmán Graíño ◽  
Raquel Sendón ◽  
Julia López Hernández ◽  
Ana Rodríguez-Bernaldo de Quirós

Food packaging materials may be a potential source of contamination through the migration of components from the material into foodstuffs. Potential migrants can be known substances such as additives (e.g., plasticizers, stabilizers, antioxidants, etc.), monomers, and so on. However, they can also be unknown substances, which could be non-intentionally added substances (NIAS). In the present study, non-targeted analysis using mass spectrometry coupled to gas chromatography (GC-MS) for the identification of migrants in plastic and paper-based candy wrappers was performed. Samples were analyzed after extraction with acetonitrile. Numerous compounds including N-alkanes, phthalates, acetyl tributyl citrate, tributyl aconitate, bis(2-ethylhexyl) adipate, butylated hydroxytoluene, etc. were identified. Many of the compounds detected in plastic samples are not included in the positive list of the authorized substances. One non-intentionally added substance, 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6-9-diene-2,8-dione, which has been reported as a degradation product of the antioxidant Irganox 1010, was found in several samples of both plastic and paper packaging. The proposed method was shown to be a useful approach for the identification of potential migrants in packaging samples. The toxicity of the compounds identified was estimated according to Cramer rules. Then, a second targeted analysis was also conducted in order to identify photoinitiators; among the analyzed compounds, only 2-hydroxybenzophenone was found in five samples.


2016 ◽  
Vol 8 (39) ◽  
pp. 7209-7216 ◽  
Author(s):  
M. J. Martínez-Bueno ◽  
S. Cimmino ◽  
C. Silvestre ◽  
J. L. Tadeo ◽  
A. I. Garcia-Valcárcel ◽  
...  

New active nanomaterials used for food packaging materials have been evaluated by a mass spectrometry-based methodology to the tentative identification of NIAS.



Author(s):  
Jazmín Osorio ◽  
Margarita Aznar ◽  
Cristina Nerín ◽  
Christopher Elliott ◽  
Olivier Chevallier

Abstract Biopolymers based on polylactic acid (PLA) and starch have numerous advantages, such as coming from renewable sources or being compostable, though they can have deficiencies in mechanical properties, and for this reason, polyester resins are occasionally added to them in order to improve their properties. In this work, migration from a PLA sample and from another starch-based biopolymer to three different food simulants was studied. Attention was focused on the determination of oligomers. The analysis was first performed by ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF–MS), which allowed the identification of the oligomers present in migration. Then, the samples were analyzed by two ambient desorption/ionization techniques directly coupled to mass spectrometry (ADI), direct analysis in real-time coupled to standardized voltage and pressure (DART-MS) and atmospheric pressure solids analysis probe (ASAP-MS). These methodologies were able to detect simultaneously the main oligomers migrants and their adducts in a very rapid and effective way. Nineteen different polyester oligomers, fourteen linear and five cyclic, composed of different combinations of adipic acid [AA], propylene glycol [PG], dipropylene glycol [DPG], 2,2-dibutyl-1,3-propanediol [DBPG], or isobutanol [i-BuOH] were detected in migration samples from PLA. In migration samples from starch-based biopolymer, fourteen oligomers from poly(butylene adipate co-terephthalate) polyester (PBAT) were identified, twelve cyclic and two linear. The results from ADI techniques showed that they are a very promising alternative tool to assess the safety and legal compliance of food packaging materials. Graphical abstract



Sign in / Sign up

Export Citation Format

Share Document