scholarly journals The Formation of Glycerol Oligomers with Two New Types of End Groups in the Presence of a Homogeneous Alkaline Catalyst

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 144 ◽  
Author(s):  
Dawid Kansy ◽  
Kornelia Bosowska ◽  
Krystyna Czaja ◽  
Anna Poliwoda

The purpose of this work was to synthesize and characterize oligoglycerols with the chains of more than four repeating units. Those oligoglycerols may have some interesting applications, among others, as polyoxyalkylation starters. The glycerol oligomerization process was carried out during 12 h, at 230 °C, under the pressure of 0.4 bar, with the use of sodium carbonate as a homogeneous basic catalyst; various concentrations of the catalyst in the reaction medium were used. The reaction products were analyzed with the use of direct infusion electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (13C NMR) and Fourier transform infrared spectroscopy (FTIR) techniques. Based on the analytical findings, the compositions of the obtained product mixtures and the structures of oligoglycerols present in individual fractions were determined. The effect of catalyst concentration on the composition of the post-reaction mixture was observed. Moreover, in addition to the conventional linear oligomers (α,α-oligoglycerols), two new types of the oligomers were for the first time detected in the post-reaction mixture: one with two hydroxyl groups and the other with a carboxylate group at the α-carbon atom.

2020 ◽  
Vol 23 (23) ◽  
pp. 2626-2634
Author(s):  
Saiedeh Kamalifar ◽  
Hamzeh Kiyani

: An efficient and facial one-pot synthesis of 4-aryl-3,4-dihydrobenzo[g]quinoline- 2,5,10(1H)-triones was developed for the first time. The process proceeded via the three-component cyclocondensation of 2-amino-1,4-naphthoquinone with Meldrum’s acid and substituted benzaldehydes under green conditions. The fused 3,4-dihydropyridin-2(1H)- one-ring naphthoquinones have been synthesized with good to high yields in refluxing ethanol as a green reaction medium. This protocol is simple and effective as well as does not involve the assistance of the catalyst, additive, or hazardous solvents.


Author(s):  
Annika S. Mokosch ◽  
Stefanie Gerbig ◽  
Christoph G. Grevelding ◽  
Simone Haeberlein ◽  
Bernhard Spengler

AbstractSchistosoma mansoni is a parasitic flatworm causing schistosomiasis, an infectious disease affecting several hundred million people worldwide. Schistosomes live dioeciously, and upon pairing with the male, the female starts massive egg production, which causes pathology. Praziquantel (PZQ) is the only drug used, but it has an inherent risk of resistance development. Therefore, alternatives are needed. In the context of drug repurposing, the cancer drug imatinib was tested, showing high efficacy against S. mansoni in vitro. Besides the gonads, imatinib mainly affected the integrity of the intestine in males and females. In this study, we investigated the potential uptake and distribution of imatinib in adult schistosomes including its distribution kinetics. To this end, we applied for the first time atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) for drug imaging in paired S. mansoni. Our results indicate that imatinib was present in the esophagus and intestine of the male as early as 20 min after in vitro exposure, suggesting an oral uptake route. After one hour, the drug was also found inside the paired female. The detection of the main metabolite, N-desmethyl imatinib, indicated metabolization of the drug. Additionally, a marker signal for the female ovary was successfully applied to facilitate further conclusions regarding organ tropism of imatinib. Our results demonstrate that AP-SMALDI MSI is a useful method to study the uptake, tissue distribution, and metabolization of imatinib in S. mansoni. The results suggest using AP-SMALDI MSI also for investigating other antiparasitic compounds and their metabolites in schistosomes and other parasites. Graphical abstract


2015 ◽  
Vol 51 (75) ◽  
pp. 14179-14182 ◽  
Author(s):  
Hung-Chin Wu ◽  
Jicheng Zhang ◽  
Zhishan Bo ◽  
Wen-Chang Chen

Solution processable star-shaped donor–acceptor conjugated molecules are explored for the first time as charge storage materials for resistor-type memory devices with a triphenylamine (donor) core, and three 1.8-naphthalimide (acceptors) end-groups.


2020 ◽  
Vol 61 (2) ◽  
pp. 29-36
Author(s):  
Zoya P. Belousova ◽  

Bacterial cellulose obtained by culturing Gluconacetobacter sucrofermentans in HS environment was converted to sulfonate derivatives using methane-, toluene- and 2-phthalimidoethanesulfonic acids in pyridine. When the ratio of the starting reagents is 1 : 1, the modification of bacterial cellulose according to the primary hydroxyl group of glucopyranose fragments is most likely. The formation of 6-substituted bacterial cellulose derivatives was observed in the reaction mixture. The IR spectra of the reaction products contain absorption bands, which are specific for (O–SO2) group in the region 1377-1338 cm−1 (as), 1178-1154 cm−1 (s), fragments of the corresponding sulfonic acids, as well as free hydroxyl groups of glucopyranose in the region 3495-3382 cm−1. Bacterial cellulose 2-phthalimidoethanesulfonate was dissolved in pyridine. After drying with a desiccant in a desiccator, it turned into a dense transparent film of brown color. The increased molecular film allows to explain the side reaction occurring between the oxo group and fragments of one of the chains of modified cellulose and the non-substituted hydroxymethyl group. The IR spectrum of bacterial cellulose 6-(2-phthalimidoethanesulfonate) contains absorption bands in the region 1711 cm−1, which are specific for (Ar–CO–O) group, and absorption bands in the region 1618 cm−1, which prove the presence of (CO–NH) group. In order to impart antibiotic properties to the bacterial cellulose 6-(2-phthalimido-ethanesulfonate) film, it was physically modified with clotrimazole. The obtained experimental data showed that the films subjected to treatment with a 1% solution of clotrimazole have antibacterial and antifungal effects and prevent the growth of pathogenic microbiota on the wound surface. The exit rates of clotrimazole from the bacterial cellulose 6-(2-phthalimidoethanesulfonate) film and from the pure bacterial cellulose film differed, but only slightly. 2-Phthalimidoethanesulfonate bacterial cellulose films can be used to form composites of effective wound covering, since in addition to the unique properties of bacterial cellulose itself (low allergenicity and adhesion to the wound surface, high hygroscopicity) they will have a regenerating effect.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110437
Author(s):  
Bui H. Tai ◽  
Dan T. Hang ◽  
Do T. Trang ◽  
Pham H. Yen ◽  
Phan T. T. Huong ◽  
...  

Five conjugated polyene ketones (1-5) were isolated from the methanol extract of the marine sponge Clathria ( Thalysias) reinwardti (Vosmaer, 1880) living in the coastal waters of Vietnam. Their structures were determined to be 8-(2′,3′,4′-trimethylphenyl)-6-methyl-oct-3( E),5( E),7( E)-trien-2-one (1), 13-apoastaxanthinone (2), 9-apoastaxanthinone (3), 2,3-dehydro-4-oxo- β-ionone (4), and 4-(2′,3′,4′-trimethylphenyl)-but-3( E)-en-2-one (5), by extensive analysis of high-resolution electron spray ionization mass spectrum (HR-ESI-MS), one-dimensional, and two-dimensional (2D) nuclear magnetic resonance (NMR) spectra, as well as by comparison of the spectral data with those reported in the literature. Compound 1 was new, compounds 2 to 4 were isolated from nature for the first time, and the chemical structure as well as the NMR assignments, of 5 were indicated by 2D NMR for the first time. Additionally, compound 5 exhibited cytotoxic activity against the human cancer cells SK-LU-1, SK-Mel-2, MCF-7, and Hep-G2 with half-minimal inhibitory concentration (IC50) values of 15.12 ± 3.43, 17.41 ± 2.83, 33.12 ± 3.39, and 34.38 ± 3.52 µM, respectively, but displayed only a weak cytotoxic effect on the normal HEK-239A cells (IC50 64.67 ± 3.67 µM). Compound 5 also significantly increased Caspase-3 activity in SK-LU-1 cells at concentrations of 10, 15, and 20 µM.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 195-202 ◽  
Author(s):  
Ulrike Grienke ◽  
Julia Zwirchmayr ◽  
Ursula Peintner ◽  
Ernst Urban ◽  
Martin Zehl ◽  
...  

AbstractIn an in vitro screening for anti-influenza agents from European polypores, the fruit body extract of Gloeophyllum odoratum dose-dependently inhibited the cytopathic effect of the H3N2 influenza virus A/Hong Kong/68 (HK/68) in Madin Darby canine kidney cells with a 50% inhibitory concentration (IC50) of 15 µg/mL, a noncytotoxic concentration. After a chromatographic work-up, eight lanostane triterpenes (1–8) were isolated and their structures were elucidated based on high-resolution electrospray ionization mass spectrometry analyses, and one- and two-dimensional nuclear magnetic resonance experiments. Constituents 1 (gloeophyllin K) and 2 (gloeophyllin L) are reported here for the first time, and compounds 5, 7, and 8 have not been described for the investigated fungal material so far. The highest activity was determined for trametenolic acid B (3) against HK/68 and the 2009 pandemic H1N1 strain A/Jena/8178/09 with IC50 values of 14 and 11 µM, respectively. In a plaque reduction assay, this compound was able to bind to cell-free viruses and to neutralize their infectivity.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao Xin-Cai

AbstractPoly(N-isopropylacrylamide) hydrogels have been successfully modified by concentrated sulfuric acid for the first time. The modified hydrogels displayed faster, larger magnitude and hydration/dehydration dynamic response to temperature cycling without increasing the lower critical solution temperature (LCST). These contributions were attributed to sulphate ester groups resulting from terminal hydroxyl groups of poly(N-isopropylacrylamide). These results may lead to technological application for temperature-responsive thin film and microgel particles with higher surface-to-volume ratio.


Inorganics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
James Beaton ◽  
Nicholas Farrell

The HIV nucleocapsid protein NCp7 was previously shown to play a number of roles in the viral life cycle and was previously identified as a potential target for small molecule intervention. In this work, the synthesis of the previously unreported complexes [Au(dien)(1MeCyt)]3+, [Au(N-Medien)(1MeCyt)]3+, and [Au(dien)(Cyt)]3+ is detailed, and the interactions of these complexes with the models for NCp7 are described. The affinity for these complexes with the target interaction site, the “essential” tryptophan of the C-terminal zinc finger motif of NCp7, was investigated through the use of a fluorescence quenching assay and by 1H-NMR spectroscopy. The association of [Au(dien)(1MeCyt)]3+ as determined through fluorescence quenching is intermediate between the previously reported DMAP and 9-EtGua analogs, while the associations of [Au(N-Medien)(1MeCyt)]3+ and [Au(dien)(Cyt)]3+ are lower than the previously reported complexes. Additionally, NMR investigation shows that the self-association of relevant compounds is negligible. The specifics of the interaction with the C-terminal zinc finger were investigated by circular dichroism spectroscopy and electrospray-ionization mass spectrometry. The interaction is complete nearly immediately upon mixing, and the formation of AuxFn+ (x = 1, 2, or 4; F = apopeptide) concomitant with the loss of all ligands is observed. Additionally, oxidized dimerized peptide was observed for the first time as a product, indicating a reaction via a charge transfer mechanism.


Sign in / Sign up

Export Citation Format

Share Document