scholarly journals Structural Evolution Mechanism of Crystalline Polymers in the Isothermal Melt-Crystallization Process: A Proposition Based on Simultaneous WAXD/SAXS/FTIR Measurements

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1316 ◽  
Author(s):  
Tashiro ◽  
Yamamoto

Time-resolved simultaneous measurements of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) (and FTIR spectra) were performed for various kinds of crystalline polymers in isothermal melt-crystallization processes, from which the common features of the structural evolution process as well as the different behaviors intrinsic to the individual polymer species were extracted. The polymers targeted here were polyethylene, isotactic polypropylene, polyoxymethylene, aliphatic nylon, vinylidene fluoride copolymer, trans-polyisoprene, and poly(alkylene terephthalate). A universal concept of the microscopically viewed structural evolution process in isothermal crystallization may be described as follows: (i) the small domains composed of locally regular but more or less disordered helical chain segments are created in the melt (this important information was obtained by the IR spectral data analysis); (ii) these domains grow larger as the length and number of more regular helical segments increase with time; (iii) the correlation among the domains becomes stronger and they approach each other; and (iv) they merge into the stacked lamellar structure consisting of the regularly arranged crystalline lattices. The inner structure of the domains is different depending on the polymer species, as known from the IR spectral data

2020 ◽  
Author(s):  
Bikash Garai ◽  
Volodymyr Bon ◽  
Francesco Walenszus ◽  
Azat Khadiev ◽  
Dmitri Novikov ◽  
...  

Variation in the metal centres of M-M paddle-wheel SBU results in the formation of isostructural DUT-49(M) frameworks. However, the porosity of the framework was found to be different for each of the structures. While a high and moderate porosity was obtained for DUT-49(Cu) and DUT-49(Ni), respectively, other members of the series [DUT-49(M); M= Mn, Fe, Co, Zn, Cd] show very low porosity and shapes of the adsorption isotherms which is not expected for op phases of these MOFs. Investigation on those MOFs revealed that those frameworks undergo structural collapse during the solvent removal at the activation step. Thus, herein, we aimed to study the detailed structural transformations that are possibly occurring during the removal of the subcritical fluid from the framework.


2015 ◽  
Vol 112 (19) ◽  
pp. 5956-5961 ◽  
Author(s):  
Ken-ichiro Murata ◽  
Hajime Tanaka

A liquid–liquid transition (LLT) in a single-component substance is an unconventional phase transition from one liquid to another. LLT has recently attracted considerable attention because of its fundamental importance in our understanding of the liquid state. To access the order parameter governing LLT from a microscopic viewpoint, here we follow the structural evolution during the LLT of an organic molecular liquid, triphenyl phosphite (TPP), by time-resolved small- and wide-angle X-ray scattering measurements. We find that locally favored clusters, whose characteristic size is a few nanometers, are spontaneously formed and their number density monotonically increases during LLT. This strongly suggests that the order parameter of LLT is the number density of locally favored structures and of nonconserved nature. We also show that the locally favored structures are distinct from the crystal structure and these two types of orderings compete with each other. Thus, our study not only experimentally identifies the structural order parameter governing LLT, but also may settle a long-standing debate on the nature of the transition in TPP, i.e., whether the transition is LLT or merely microcrystal formation.


2015 ◽  
Vol 119 (22) ◽  
pp. 12660-12667 ◽  
Author(s):  
Martin Bremholm ◽  
Henrik Birkedal ◽  
Bo Brummerstedt Iversen ◽  
Jan Skov Pedersen

1995 ◽  
Vol 28 (20) ◽  
pp. 6931-6936 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
Bryan B. Sauer ◽  
Ravi K. Verma ◽  
H. Gerhard Zachmann ◽  
Soenke Seifert ◽  
...  

2019 ◽  
Vol 52 (5) ◽  
pp. 1169-1175 ◽  
Author(s):  
Jitendra Bahadur ◽  
Avik Das ◽  
Debasis Sen

Time-resolved small-angle X-ray scattering (SAXS) measurements have been carried out using the newly developed SAXS beamline at the Indus-2 synchrotron source to study the evaporation-induced structural evolution of the lamellar mesophase. An aqueous dispersion of sodium dodecyl sulfate (SDS) of ∼0.60 volume fraction at room temperature results in a gel phase due to random jamming of the lamellar structured entities. Thermal analysis of SDS in the powder phase shows three distinct phenomena corresponding to evaporation of free and bound water, followed by thermal dissociation of SDS molecules. Time-resolved in situ SAXS measurements during evaporation of the gel under ambient conditions reveal two regimes of structural evolution of the lamellar phase. The evaporation rate in the first phase of evaporation up to 60 min is roughly six times faster than that in the second phase. A plausible mechanism is proposed to explain this behaviour. The intrusion of water molecules into layers sandwiched between polar head groups forms an additional 7 Å thick layer of water molecules, leading to an increase in the distance between the head groups. The evaporation of the water molecules in the first phase up to 60 min causes a reduction in the lamellar thickness of ∼3 Å. Subsequent evaporation of water molecules in the second phase is quite slow owing to the higher binding energy of these water molecules and the low permeability caused by the reduced lamellar thickness after the first phase of evaporation. The swelling behaviour of the lamellar structure under ambient conditions is found to be reversible and the powder-phase structure is observed after a few days of evaporation of the gel phase.


2012 ◽  
Vol 714 ◽  
pp. 63-66 ◽  
Author(s):  
David G. Bucknall ◽  
Gabriel Bernardo ◽  
Meisha L. Shofner ◽  
Deb Nabankur ◽  
Dharmaraj Raghavan ◽  
...  

In this work we have performed a systematic study of blends of [6,-phenyl C61 butyric acid methyl ester (PCBM) with the following amorphous and semi-crystalline polymers: atactic polystyrene (PS), syndiotactic polystyrene (syn-PS), poly (2-vinyl-naphthalene) (P2VN), poly (9-vinyl-phenanthrene) (P9VPh), poly (vinylidene-fluoride) (PVdF) and poly (3-hexyl-thiophene) (P3HT). Experimental measurements using DSC, x-ray and neutron scattering coupled with molecular modeling (MD and DFT) have been utilized to determine the solubility and phase morphology of these model polymer-fullerene blends.


2014 ◽  
Vol 2 (21) ◽  
pp. 7766-7779 ◽  
Author(s):  
Paula Serras ◽  
Verónica Palomares ◽  
Teófilo Rojo ◽  
Helen E. A. Brand ◽  
Neeraj Sharma

The first time-resolved in situ synchrotron XRD study of a cathode in a functioning sodium-ion battery. We determine the reaction mechanism, lattice parameters, sodium evolution, and the maximum sodium extraction for the fresh and precycled cell.


2008 ◽  
Vol 1072 ◽  
Author(s):  
Riccardo De Bastiani ◽  
Alberto Maria Piro ◽  
Maria Grazia Grimaldi ◽  
Emanuele Rimini ◽  
Giuseppe Baratta ◽  
...  

ABSTRACTThe crystallization kinetics of as-deposited amorphous Ge2Sb2Te5 thin films has been measured by in situ time resolved reflectivity. X-ray diffraction and Raman scattering analyses of partially transformed samples allowed to correlate the evolution of the transition to the structural modification in the long and short range configuration. The experimental results evidenced that during the early stages of crystallization there is a reduction of Ge-Te tetrahedral bonds, characteristics of the Ge coordination in amorphous Ge2Sb2Te5 films.


2016 ◽  
Vol 194 ◽  
pp. 117-145 ◽  
Author(s):  
Simon P. Neville ◽  
Vitali Averbukh ◽  
Serguei Patchkovskii ◽  
Marco Ruberti ◽  
Renjie Yun ◽  
...  

The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.


Sign in / Sign up

Export Citation Format

Share Document