scholarly journals Use of Aligned Microscale Sacrificial Fibers in Creating Biomimetic, Anisotropic Poly(glycerol sebacate) Scaffolds

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1492 ◽  
Author(s):  
Li ◽  
Hu ◽  
Hu

Poly(glycerol sebacate) (PGS) is a biocompatible, biodegradable elastomer that has been shown promise as a scaffolding material for tissue engineering; it is still challenging, however, to produce anisotropic scaffolds by using a thermoset polymer, such as PGS. Previously, we have used aligned sacrificial poly(vinyl alcohol) (PVA) fibers to help produce an anisotropic PGS membrane; a composite membrane, formed by embedding aligned PVA fibers in PGS prepolymer, was subjected to curing and subsequent PVA removal, resulting in aligned grooves and cylindrical pores on the surface of and within the membrane, respectively. PVA, however, appeared to react with PGS during its curing, altering the mechanical characteristics of PGS. In this study, aligned sacrificial fibers made of polylactide (PLA) were used instead. Specifically, PLA was blend-electrospun with polyethylene oxide to increase the sacrificial fiber diameter, which in turn increased the size of the grooves and cylindrical pores. The resultant PGS membrane was shown to be in vitro cyto-compatible and mechanically anisotropic. The membrane’s Young’s modulus was 1–2 MPa, similar to many soft tissues. In particular, the microscale grooves on the membrane surface were found to be capable of directing cell alignment. Finally, based on the same approach, we fabricated a biomimetic, anisotropic, PGS tubular scaffold. The compliance of the tubular scaffold was comparable to native arteries and in the range of 2% to 8% per 100 mmHg, depending on the orientations of the sacrificial fibers. The anisotropic PGS tubular scaffolds can potentially be used in vascular tissue engineering.

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


2019 ◽  
Vol 20 (20) ◽  
pp. 5126 ◽  
Author(s):  
Caterina Cristallini ◽  
Serena Danti ◽  
Bahareh Azimi ◽  
Veronika Tempesti ◽  
Claudio Ricci ◽  
...  

The objective of this study was the preparation and physico-chemical, mechanical, biological, and functional characterization of a multifunctional coating for an innovative, fully implantable device. The multifunctional coating was designed to have three fundamental properties: adhesion to device, close mechanical resemblance to human soft tissues, and control of the inflammatory response and tissue repair process. This aim was fulfilled by preparing a multilayered coating based on three components: a hydrophilic primer to allow device adhesion, a poly(vinyl alcohol) hydrogel layer to provide good mechanical compliance with the human tissue, and a layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. The use of biopolymer fibers offered the potential for a long-term interface able to modulate the release of an anti-inflammatory drug (dexamethasone), thus contrasting acute and chronic inflammation response following device implantation. Two copolymers, poly(vinyl acetate-acrylic acid) and poly(vinyl alcohol-acrylic acid), were synthetized and characterized using thermal analysis (DSC, TGA), Fourier transform infrared spectroscopy (FT-IR chemical imaging), in vitro cell viability, and an adhesion test. The resulting hydrogels were biocompatible, biostable, mechanically compatible with soft tissues, and able to incorporate and release the drug. Finally, the multifunctional coating showed a good adhesion to titanium substrate, no in vitro cytotoxicity, and a prolonged and controlled drug release.


Biomaterials ◽  
2006 ◽  
Vol 27 (24) ◽  
pp. 4315-4324 ◽  
Author(s):  
Delara Motlagh ◽  
Jian Yang ◽  
Karen Y. Lui ◽  
Antonio R. Webb ◽  
Guillermo A. Ameer

2010 ◽  
Vol 88 (9) ◽  
pp. 855-873 ◽  
Author(s):  
Divya Pankajakshan ◽  
Devendra K. Agrawal

Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.


2017 ◽  
Vol 75 ◽  
pp. 1075-1082 ◽  
Author(s):  
Maria G. Drozdova ◽  
Daria S. Zaytseva-Zotova ◽  
Roman A. Akasov ◽  
Anna S. Golunova ◽  
Alexander A. Artyukhov ◽  
...  

2007 ◽  
Vol 82A (4) ◽  
pp. 907-916 ◽  
Author(s):  
Delara Motlagh ◽  
Josephine Allen ◽  
Ryan Hoshi ◽  
Jian Yang ◽  
Karen Lui ◽  
...  

Author(s):  
José M. Pérez-Pomares ◽  
V. Mironov ◽  
Juan A. Guadix ◽  
David Macías ◽  
Roger R. Markwald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document