scholarly journals A Novel Inherently Flame-Retardant Composite Based on Zinc Alginate/Nano-Cu2O

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1575 ◽  
Author(s):  
Peng Xu ◽  
Peiyuan Shao ◽  
Qing Zhang ◽  
Wen Cheng ◽  
Zichao Li ◽  
...  

A novel flame-retardant composite material based on zinc alginate (ZnAlg) and nano-cuprous oxide (Cu2O) was prepared through a simple, eco-friendly freeze-drying process and a sol-gel method. The composites were characterized and their combustion and flammability behavior were tested. The composites had high thermal stability and achieved nearly non-flammability with a limiting oxygen index (LOI) of 58. The results show remarkable improvement of flame-retardant properties in the ZnAlg/Cu2O composites, compared to ZnAlg. Furthermore, the pyrolysis behavior was determined by pyrolysis–gas chromatography–mass spectrometry (Py-GC-MS) and the flame-retardant mechanism was proposed based on the combined experimental results. The prepared composites show promising application prospects in building materials and the textile industry.

2017 ◽  
Vol 30 (6) ◽  
pp. 667-676 ◽  
Author(s):  
Wei Yan ◽  
Jie Yu ◽  
Mingqiu Zhang ◽  
Lijuan Long ◽  
Tao Wang ◽  
...  

A series of flame-retardant epoxy resins (EPs) containing either phenethyl-bridged 9 or 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (bisDOPO) were prepared. The flame-retardant properties of bisDOPO on EP composites were characterized by the limiting oxygen index (LOI), the UL-94 vertical burning, and the cone calorimeter test (CCT).The LOI of the EP/bisDOPO composites increased from 21.8% to 38.0%, and the hybrids with the 10 wt% bisDOPO obtained a V-0 rating in the UL94 vertical burning test. The char residue following the CCT showed intumescent structures with continuous and compact surfaces that can effectively suppress the spread of the flame and extinguish the fire. This was confirmed through both visual observation and scanning electron microscopy (SEM) measurements. The flame-retardant mechanism was studied by Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis/infrared spectrometry, SEM/energy-dispersive X-ray, and pyrolysis-gas chromatography/mass spectrometry. Overall, bisDOPO was an effective flame retardant with potential applications within EP.


2021 ◽  
Author(s):  
Na Li ◽  
Panpan Chen ◽  
Dongni Liu ◽  
Gaowei Kang ◽  
Liu Liu ◽  
...  

Abstract Cotton fibers as original materials of cotton fabrics have a widely application due to its perfect hygroscopicity, air permeability and largest annual output. However, cotton materials have potential safety hazard during its application because of flammability (limiting oxygen index is about 18%). In order to improve the flame retardancy of cotton fibers and reduce the damage of its mechanical properties, novel P/Si based flame retardant (PFR) nanoparticles were synthesized by one-step radical polymerization. Vinyl phosphoric acid and tetramethyl divinyl disiloxane were introduced into the nanoparticles. The structure, morphology and thermal stability of PFR was characterized by fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis test (TGA). Durable flame retardant cotton fibers were prepared by dip-coating and plasma induced crosslinking methods. Micro-calorimeter (MCC) characterization showed that the peak of heat release rate (pHRR) and the total heat release were reduced by 47.3% and 29.8% for modified cotton fibers compared with pure cotton fibers. Limiting oxygen index (LOI) of modified cotton fibers was increased to 27%. The residue carbon of modified cotton fibers was 19.0% at 700 o C, while the value of pure cotton fibers was 3.0%. Besides, durability of the modified cotton fibers was approved by cyclic washing test. In addition, flame retardant mechanism was revealed by collecting and analyzing condensed and gaseous pyrolysis products. The data of FE-SEM for residue carbon, FT-IR spectra of products at different pyrolysis temperatures and pyrolysis gas chromatography mass spectrometry (Py-GC-MS) showed that PFR was a synergistic flame retardant contained barrier and quenching effecting applied on cotton materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Yuan Shen ◽  
Chen-Feng Kuan ◽  
Hsu-Chiang Kuan ◽  
Chia-Hsun Chen ◽  
Jia-Hong Wang ◽  
...  

In this investigation, silane was grafted onto the surface of graphene nanosheets (GNSs) through free radical reactions, to form Si-O-Et functional groups that can undergo the sol-gel reaction. To improve the compatibility between the polymer matrix and the fillers, epoxy monomer was modified using a silane coupling agent; then, the functionalized GNSs were added to the modified epoxy to improve the thermal stability and strengthen the flame-retardant character of the composites. High-resolution X-ray photoelectron spectrometry reveals that when the double bonds in VTES are grafted to the surfaces of GNSs. Solid-state 29Si nuclear magnetic resonance presents that the distribution of the signal associated with the T3structure is wide and significant, indicating that the functionalization reaction of the silicone in the modified epoxy and VTES-GNSs increases the network-like character of the structures. Thermal gravimetric analysis, the integral procedure decomposition temperature, and limiting oxygen index demonstrate that the GNSs composites that contained silicon had a higher thermal stability and stronger flame-retardant character than pure epoxy. The dynamic storage modulus of all of the m-GNSs containing composites was significantly higher than that of the control epoxy, and the modulus of the composites increased with the concentration of m-GNSs.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2442
Author(s):  
Ji Su Kim ◽  
Ji Eun Song ◽  
Daeyoung Lim ◽  
Heejoon Ahn ◽  
Wonyoung Jeong

To produce flame retardant poly(acrylonitrile-co-vinylidene chloride) (PANVDC) fibers with limiting oxygen index (LOI) values above 28%, flame retardants are added to fibers. Because antimony trioxide (ATO) used widely for PANVDC is suspected as a carcinogen, non-toxic zinc hydroxystannate (ZHS) could be the alternative for reduction of ATO usage. Moreover, a flame retardant efficiency of the combination of ATO with ZHS could be expected because it was reported that ATO resists flame in the gas phase, whereas ZHS reacts in the condensed phase. Therefore, this study discussed the flame retardant mechanisms of ATO and ZHS in PANVDC, and evaluated the efficiency of the combination. PANVDC fibers with ATO and ZHS in 15 phr were produced by wet spinning. When ZHS was added, a more cyclized structure was detected (e.g., 1-methylnaphthalene) through pyrolysis−gas chromatography-mass spectrometry (Py-GC/MS). As a result of SEM-EDX analysis, Sb and Cl hardly remained in char layers of PANVDC-ATO; meanwhile, Zn, Sn, and Cl remained in that of PANVDC-ZHS. This implied that SbCl3 from reaction of ATO and HCl reacts in the gas phase, whereas ZnCl2 and SnCl2 from ZHS and HCl promotes the cyclization reaction of PANVDC in the condensed phase. The LOI values of PANVDC, PANVDC-ATO, and PANVDC-ZHS were 26.4%, 29.0%, and 33.5%, respectively. This suggests that ZHS is a highly effective for PANVDC. Meanwhile, the LOI of PANVDC containing ATO-ZHS mixture is 31.0%. The combination of ATO and ZHS exhibited no efficiency. The addition of ATO and ZHS slightly reduced the tenacities of the fibers, respectively, 3.11 and 3.75 from 4.42 g/den.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Mingyang Du ◽  
Chunze He ◽  
Canhui Zhou

The effect of Isocyanate trimer on the flame retardancy mechanism of polyisocyanurate (PIR) foam was studied through 3 aspects including the mechanism of thermal decomposition stage in condensed phase, the barrier mechanism of carbon layer formation on the surface in condensed phase and the mechanism in gaseous phase by using infrared spectroscopy, scanning electron microscopy, thermal analysis, cone calorimeter, high temperature pyrolysis gas chromatography mass spectrometry. The results show that the trimer can improve the thermal stability of the PIR foam and is not easily decomposed in the combustion. The trimer can increase the carbon content of the PIR foam to 29.9% than that of the polyurethane (PU) foam. The carbon layer formed is denser, and it can retards heat and oxygen and thus improve the flame retardant properties; trimer can reduce the release of flammable polyol gas, decompose into more carbon dioxide which is inert gas and it has certain flame retardant effect in the gaseous phase.


2021 ◽  
pp. 095400832199241
Author(s):  
Zijin Luo ◽  
Zhe Chen ◽  
Jun Wei ◽  
Dongchao Wang ◽  
Han Chen ◽  
...  

A novel intumescent flame retardant, PPMD, was designed from phosphaphenanthrene and nitrogen heterocycles through the two-step gut reactions of 1,4-phthalaldehyde and 3-methyl-1-phe-nylpyrazol-5-ylamine. After determination of its structure by nuclear magnetic resonance and Fourier-transform infrared analyses, PPMD was added to an epoxy resin (EP) to facilitate a curing process. Thus, EP/PPMD samples with excellent transparency and flame retardancy were acquired. For example, the EP sample satisfied the UL-94 V-0 standard and achieved a limiting oxygen index value of 30.5% because of the incorporation of 5 wt% PPMD. The cone calorimeter test of the EP/5% PPMD sample revealed that its total smoke production (TSP) and total heat release (THR) values of EP/5% PPMD was only 22.5% and 56.4% of the control group, respectively. Moreover, the average effective heat of combustion (av-EHC) value of EP/5% PPMD was reduced by 34.1%, indicating that PPMD possessed high flame-inhibition activity and smoke suppression efficiency. The flame-retardant mechanisms of PPMD were also investigated in gas phase by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and in condensed phase by XPS and IR.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 875 ◽  
Author(s):  
Zhenhui Liu ◽  
Jiao Li ◽  
Xihui Zhao ◽  
Zichao Li ◽  
Qun Li

A polyester fabric, coated with calcium alginate and nano-calcium borate composites (CAB-PL), was fabricated by a post-cross-linking method, with remarkable improvement of flame retardancy and thermal stability, as compared with the original polyester fabric (PL). The mechanical properties of CAB-PL and PL were studied, and characterizations and tests including Fourier transform infrared spectrum (FTIR), scanning electron microscopy (SEM), limiting oxygen index (LOI), cone calorimetry (CONE) and thermogravimetric analysis (TGA) were employed to evaluate the flame retardancy and thermostability. The test results of CAB-PL showed excellent mechanical strength and anti-dripping properties. In comparison with PL, TGA results indicate that the presence of surface-coated composites produced more char residue and can effectively inhibit the heat transmission, and the LOI value of CAB-PL was improved from 25 to 33. Moreover, CONE results show that 88.65% reduction of total smoke release (TSR) values was induced by the presence of CAB. In addition, the possible pyrolysis mechanisms for CAB-PL have been proposed based on the results of pyrolysis-gas chromatography–mass spectrometry (Py-GC-MS) analysis. The combined results can provide useful information for understanding the flame retardant mechanisms of alginates as well. In summary, polyester fabric was upgraded by coating it with the calcium alginate/nano-calcium borate, thus achieving extraordinary flame retardancy and thermal stability for various applications within the textile industry.


2021 ◽  
Vol 891 ◽  
pp. 37-42
Author(s):  
Sheila Shahidi ◽  
Hakimeh Mohammadbagherloo ◽  
Seyedmohammad Elahi ◽  
Sanaz Dalalsharifi ◽  
Rattanaphol Mongkholrattanasit

In this paper, the sol-gel method was used for in-situ synthesis of SiO2 nanoparticles (NPs) on cotton fabrics with tetraethyl orthosilicate (TEOS) in the presence of acid and alkaline indicators. The samples were characterized using by (X-ray diffraction) XRD, (scanning electron Microscopy) SEM, (Inductively coupled plasma) ICP, water drop test and also the flame retardant properties were studied by char yield. The SEM images showed that the nanoparticles are spherical in shape and the acidity or alkalinity of the medium has an effect on the formation of particles. The XRD patterns showed the typical diffraction of amorphous SiO2 (Si-O short-order structure), also ICP analysis showed that by washing the fabrics, the nanoparticles are still present on the fabric, and this indicated the stability of the washing of the fabrics impregnated with the nanoparticles. By in-situ synthesis of SiO2 nanoparticles, the flame retardant properties have been improved significantly and the amount of residual char was increased and samples were observed to be hydrophilic.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 720 ◽  
Author(s):  
Chen ◽  
Chiang

The NCO functional group of 3-isocyanatoproplytriethoxysilane (IPTS) and the OH functional group of 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phospha-phenantbrene-10-oxide (DOPO-BQ) were used to conduct an addition reaction. Following completion of the reaction, triglycidyl isocyanurate (TGIC) was introduced to conduct a ring-opening reaction. Subsequently, a sol–gel method was used to initiate a hydrolysis–condensation reaction on TGIC–IPTS–DOPO-BQ to form a hyperbranched nitrogen–phosphorous–silicon (HBNPSi) flame retardant. This flame retardant was incorporated into a polyurethane (PU) matrix to prepare a hybrid material. Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), limiting oxygen index (LOI), UV-VIS spectrophotometry, and Raman analysis were conducted to characterize the structure and analyze the transparency, thermal stability, flame retardancy, and residual char to understand the flame retardant mechanism of the prepared hybrid material. After the flame retardant was added, the maximum degradation rate decreased from −36 to −17 wt.%/min, the integral procedural decomposition temperature (IPDT) increased from 348 to 488 °C, and the char yield increased from 0.7 to 8.1 wt.%. The aforementioned results verified that the thermal stability of PU can be improved after adding HBNPSi. The LOI analysis indicated that the pristine PU was flammable because the LOI of pristine PU was only 19. When the content of added HBNPSi was 40%, the LOI value was 26; thus the PU hybrid became nonflammable.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


Sign in / Sign up

Export Citation Format

Share Document