scholarly journals Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 530 ◽  
Author(s):  
Bao-Teng Wang ◽  
Shuang Hu ◽  
Xing-Ye Yu ◽  
Long Jin ◽  
Yun-Jia Zhu ◽  
...  

Polysaccharides are biopolymers made up of a large number of monosaccharides joined together by glycosidic bonds. Polysaccharides are widely distributed in nature: Some, such as peptidoglycan and cellulose, are the components that make up the cell walls of bacteria and plants, and some, such as starch and glycogen, are used as carbohydrate storage in plants and animals. Fungi exist in a variety of natural environments and can exploit a wide range of carbon sources. They play a crucial role in the global carbon cycle because of their ability to break down plant biomass, which is composed primarily of cell wall polysaccharides, including cellulose, hemicellulose, and pectin. Fungi produce a variety of enzymes that in combination degrade cell wall polysaccharides into different monosaccharides. Starch, the main component of grain, is also a polysaccharide that can be broken down into monosaccharides by fungi. These monosaccharides can be used for energy or as precursors for the biosynthesis of biomolecules through a series of enzymatic reactions. Industrial fermentation by microbes has been widely used to produce traditional foods, beverages, and biofuels from starch and to a lesser extent plant biomass. This review focuses on the degradation and utilization of plant homopolysaccharides, cellulose and starch; summarizes the activities of the enzymes involved and the regulation of the induction of the enzymes in well-studied filamentous fungi.

2020 ◽  
Vol 117 (11) ◽  
pp. 6003-6013 ◽  
Author(s):  
Vincent W. Wu ◽  
Nils Thieme ◽  
Lori B. Huberman ◽  
Axel Dietschmann ◽  
David J. Kowbel ◽  
...  

Filamentous fungi, such asNeurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling ofN. crassaon 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors inN. crassaand characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Fermentation ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 124
Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Chieh-Chen Huang

Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jean F. Challacombe ◽  
Cedar N. Hesse ◽  
Lisa M. Bramer ◽  
Lee Ann McCue ◽  
Mary Lipton ◽  
...  

Abstract Background The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. Results Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. Conclusions This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.


Author(s):  
Naoki Shinohara ◽  
Kazuhiko Nishitani

Abstract All land plants encode large multigene families of xyloglucan endotransglucosylase/hydrolases (XTHs), plant-specific enzymes that cleave and reconnect plant cell-wall polysaccharides. Despite the ubiquity of these enzymes, considerable uncertainty remains regarding the evolutionary history of the XTH family. Phylogenomic and comparative analyses in this study traced the non-plant origins of the XTH family to Alphaproteobacteria ExoKs, bacterial enzymes involved in loosening biofilms, rather than Firmicutes licheninases, plant biomass digesting enzymes, as previously supposed. The relevant horizontal gene transfer (HGT) event was mapped to the divergence of non-swimming charophycean algae in the Cryogenian geological period. This HGT event was the likely origin of charophycean EG16-2s, which are putative intermediates between ExoKs and XTHs. Another HGT event in the Cryogenian may have led from EG16-2s or ExoKs to fungal CRHs, enzymes that cleave and reconnect chitin and glucans in fungal cell walls. This successive transfer of enzyme-encoding genes may have supported the adaptation of plants and fungi to the ancient icy environment by facilitating their sessile lifestyles. Furthermore, several protein evolutionary steps, including coevolution of substrate-interacting residues and putative intra-family gene fusion, occurred in the land plant lineage and drove diversification of the XTH family. At least some of those events correlated with the evolutionary gain of broader substrate specificities, which may have underpinned the expansion of the XTH family by enhancing duplicated gene survival. Together, this study highlights the Precambrian evolution of life and the mode of multigene family expansion in the evolutionary history of the XTH family.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4871
Author(s):  
Héctor M. Alvarez ◽  
Martín A. Hernández ◽  
Mariana P. Lanfranconi ◽  
Roxana A. Silva ◽  
María S. Villalba

Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.


Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Chieh-Chen Huang

Bioethanol has been considered as an excellent alternative to fossil fuels since it importantly contributes to the reduced consumption of the crude oil and to the alleviation of environmental pollution [1]. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds [2]. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over the others, e.g. it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars) [3], tolerate to high temperature, toxin [4,5] and a wide range of pH values [6], and produce volatile short-chain ester [2]. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species [7]. These attributes make K. marxianus a promise as an industrial host for the biosynthesis of biofuels and other valuable chemicals.


2017 ◽  
Author(s):  
Areejit Samal ◽  
James P. Craig ◽  
Samuel T. Coradetti ◽  
J. Philipp Benz ◽  
James A. Eddy ◽  
...  

AbstractPlant biomass degradation by fungal derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungusNeurospora crassa. To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighed to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network (PCWDN), leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway ofNeurospora crassa. Our network serves as a scaffold for integration of diverse experimental data, leading to elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi, and guiding efforts to rationally engineer industrially relevant hyper-production strains.


Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

Sign in / Sign up

Export Citation Format

Share Document