scholarly journals A Biodegradable Magnetic Nanocomposite as a Superabsorbent for the Simultaneous Removal of Selected Fluoroquinolones from Environmental Water Matrices: Isotherm, Kinetics, Thermodynamic Studies and Cost Analysis

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1102 ◽  
Author(s):  
Geaneth Pertunia Mashile ◽  
Kgokgobi Mogolodi Dimpe ◽  
Philiswa Nosizo Nomngongo

The application of a magnetic mesoporous carbon/β-cyclodextrin–chitosan (MMPC/Cyc-Chit) nanocomposite for the adsorptive removal of danofloxacin (DANO), enrofloxacin (ENRO) and levofloxacin (LEVO) from aqueous and environmental samples is reported in this study. The morphology and surface characteristics of the magnetic nanocomposite were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption–desorption and Fourier transform infrared spectroscopy (FTIR). The N2 adsorption–desorption results revealed that the prepared nanocomposite was mesoporous and the BET surface area was 1435 m2 g−1. The equilibrium data for adsorption isotherms were analyzed using two and three isotherm parameters. Based on the correlation coefficients (R2), the Langmuir and Sips isotherm described the data better than others. The maximum monolayer adsorption capacities of MMPC/Cyc-Chit nanocomposite for DANO, ENRO and LEVO were 130, 195 and 165 mg g−1, respectively. Adsorption thermodynamic studies performed proved that the adsorption process was endothermic and was dominated by chemisorption.

2018 ◽  
Vol 921 ◽  
pp. 60-64
Author(s):  
Ke Xun Li ◽  
Jiang Jiang Ma ◽  
Jie Zhang ◽  
Kun Jia ◽  
Bi Cheng Zhou ◽  
...  

In this paper, we reported on the preparation of porous materials via a reaction under Autogenic Pressure at Elevated Temperature (RAPET) at 700°Cusing natural product and alkoxides as precursors. The RAPET is a new simple efficient method to prepare inorganic materials. The porous carbon and its composite materials were prepared via the method of RAPET using natural products such as sweet potato, coriander, the absorbent cotton and viscose fiber doped by tetrabutyl titanate (TBOT) and tetraethoxysilane (TEOS). The reaction temperature of RAPET was 700°C. The carbon and its composites were studied with scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption-desorption measurements. The BET surface area of the materials are different from 4m2/g to 405m2/g. The XRD investigation indicates that the phases of the TiO2 in the carbon/TiO2 composites are anatase. The materials show a certain charge-discharge performance.


2010 ◽  
Vol 113-116 ◽  
pp. 775-779 ◽  
Author(s):  
Yan Liu ◽  
Yun Wang ◽  
Xiao Jie Zhang ◽  
Ji Min Xie ◽  
Yong Sheng Yan

Mesoporous silica SBA-15 has been prepared rapidly under normal pressure by microwave irradiation method. The textural properties were studied by low-angle X-ray diffraction (XRD) and nitrogen adsorption-desorption. The optimum adsorption conditions of Pb(Ⅱ) on SBA-15 was investigated. The results show that the adsorption kinetics follows a pseudo-second-order rate model and the experimental equilibrium data is fitted well by Langmuir adsorption isotherm. The adsorption capacity reaches 50.10 mg•g-1 which is much higher than that of hydrothermal synthesized samples. This adsorbent has been applied in the determination of Pb(Ⅱ) in river sediments samples.


2015 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhaoqi Pan ◽  
Junyu Zeng ◽  
Bingyan Lan ◽  
Laisheng Li

AbstractArgentum-loaded MCM-41 (Ag/MCM-41) was synthesized successfully by a hydrothermal method and used as a catalyst for the ozonation of p-chlorobenzoic acid (p-CBA) in aqueous solution. Ag/MCM-41 was characterized by low angle X-ray diffraction (XRD), nitrogen adsorption-desorption and transmission electron microscopy (TEM). Characterizations suggest that the prepared samples retained a highly regulated mesopores of hexagonal structure and a high BET surface area. The influences of argentum content, initial pH, reaction temperature on the catalytic ozonation were also evaluated. Ag/MCM-41/O


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5436-5449
Author(s):  
Chao Cao ◽  
Lupeng Shao ◽  
Lucian A. Lucia ◽  
Yu Liu

Magnetic lignin-based adsorbent (MLA) was successfully fabricated to remove methyl orange dye from aqueous solution. The synthesized MLA was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). In the process of adsorption, influence factors and recycling performance were considered, and the adsorption mechanisms such as isotherm and kinetics were investigated. The result showed that the equilibrium data was consisted with the Langmuir model with a maximum adsorption capacity of 85.0 mg/g. The adsorption kinetics followed a pseudo-second-order model. Based the adsorption performance, MLA showed good recyclability. Therefore, these results demonstrate that MLA could offer a great potential as an efficient and reusable adsorbent in the wastewater treatments.


2019 ◽  
Vol 1 (1) ◽  
pp. 54-60
Author(s):  
Awitdrus Awitdrus

Activated carbon was prepared from Terminalia catappa shells using microwave asissted KOH activation. The ratio of mass percentages of Terminalia catappa and KOH were 4:1, 4:2, and 4:3. Terminalia catappa based activated carbon was prepared by KOH activation at the room temperature for 24 hours and followed by microwave irradiation at the out put power of 630 Watt for 20 minutes. The physical properties of activated carbon i.e. surface morphology, micro structure, and BET surface area were characterized by electron scanning microscope, X-ray diffraction and N2 adsorption-desorption isotherm at 77K, respectively. The highest BET surface area was 312 m2/g with adsorption of activated carbon towards methylene blue by 84.4 mg/g. The BET surface area was directly correlated with the stack height (Lc) of the activated carbon.


2009 ◽  
Vol 79-82 ◽  
pp. 525-528 ◽  
Author(s):  
Ke Xun Li ◽  
Hong Liang Li ◽  
Jun Hua Zhao ◽  
Ying Chun Zhu ◽  
Xiu Song Zhao

Carbon/TiO2 composites were prepared via the reaction under Autogenic Pressure at Elevated Temperature (RAPET) using alkoxides as precursor, and then porous TiO2 hollow spheres were derived after removing the carbon ingredient by calcination at 600°C. The influence of surfactant additives, including the addition ratio and the nature of the surfactants, on the morphology and the structures of the Carbon/TiO2 composites and the derived TiO2 were also studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectrophotoscopy (DRS) and nitrogen adsorption-desorption measurements. The results revealed that the morphology of the products turned to spherical and then fusiform and the structures turned from hollow to solid with the increasing of surfactant additive. The BET surface area of the hollow TiO2 was modified from 12m2/g to 57m2/g after calcinations. The XRD investigation indicates that the phases of the TiO2 in both the carbon/TiO2 composites and the derived TiO2 hollow spheres are anatase.


2021 ◽  
Vol 14 ◽  
pp. 117862212110574
Author(s):  
Junaidi H Samat ◽  
Nurulizzatul Ningsheh M Shahri ◽  
Muhammad Ashrul Abdullah ◽  
Nurul Amanina A Suhaimi ◽  
Kanya Maharani Padmosoedarso ◽  
...  

In this study, Acid Blue 25 (AB25), which is a negatively charged synthetic dye was removed from an aqueous solution by adsorption onto agricultural wastes, including banana (BP) and durian (DP) peels. The adsorption performances of AB25 were related to surface characteristics of the agricultural wastes, including their chemical functional groups, net surface charge, surface morphology, surface area, and pore volume. Parameters affecting the adsorption, including contact times, initial concentration, pH, and temperature were investigated. The results revealed that the adsorption of AB25 followed pseudo-second order kinetics, and that the adsorption process was controlled by a combination of intraparticle and film diffusion with a two-step mechanism. The equilibrium data could be simulated by the Langmuir isotherm model, suggesting that AB25 molecules are adsorbed on active sites with a uniform binding energy as a monolayer on the adsorbent surface. The adsorption process was spontaneous and exothermic, and the adsorption capacity decreased with the pH of the medium. The spent adsorbents were best regenerated by acid treatment (pH 2), and could be recycled for several adsorption-desorption processes. Under ambient conditions, the maximum adsorption capacities of AB25 on BP and DP were 70.0 and 89.7 mg g−1, respectively, which is much higher than on a large variety of reported adsorbents derived from other agricultural wastes.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1263 ◽  
Author(s):  
Nacera Boudaoud ◽  
Hafida Miloudi ◽  
Djamila Bouazza ◽  
Mehdi Adjdir ◽  
Abdelkader Tayeb ◽  
...  

Removal of heavy metals from wastewater is mandatory in order to avoid water pollution of natural reservoirs. In the present study, layered double hydroxide (LDH) materials were evaluated for removal of zinc from aqueous solutions. Materials thus prepared were impregnated with cyanex 272 using the dry method. These materials were characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermal analysis. Batch shaking adsorption experiments were performed in order to examine contact time and extraction capacity in the removal process. Results showed that the equilibrium time of Zn (II) extraction is about 4 h for Mg2Al-CO3 and Mg2Al-CO3-cyanex 272, 6 h for Zn2Al-CO3, and 24 h for Zn2Al-CO3-cyanex 272. The experimental equilibrium data were tested for Langmuir, and Freundlich isotherm models. Correlation coefficients indicate that experimental results are in a good agreement with Langmuir’s model for zinc ions. Pseudo-first, second-order, Elovich, and intraparticular kinetic models were used to describe kinetic data. It was determined that removal of Zn2+ was well-fitted by a second-order reaction kinetic. A maximum capacity of 280 mg/g was obtained by Zn2Al-CO3-cyanex 272.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Li-Na Jin ◽  
Jian-Guo Wang ◽  
Xin-Ye Qian ◽  
Dan Xia ◽  
Ming-Dong Dong

Nano-Co3O4with different morphologies was successfully synthesized by annealing CoC2O4·2H2O precursors. The as-obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption-desorption. It was found that the volume ratio of N,N-dimethylformamide (DMF) and water played an important role in the formation of cobalt oxalate precursors with different morphologies. After calcination in air, cobalt oxalate precursors converted to Co3O4nanomaterials while their original morphologies were maintained. The catalytic effect was investigated for nano-Co3O4with different morphologies on the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimeter (DSC). The results indicated that all products showed excellent catalytic activity for thermal decomposition of AP and the Co3O4nanorods with larger BET surface area and pore volume had the highest catalytic activity.


2011 ◽  
Vol 399-401 ◽  
pp. 343-346
Author(s):  
Ai Min Chen ◽  
Pei Gu ◽  
Shu Fen Xu ◽  
Zhe Ming Ni

The organic-inorganic composite of oleic acid embedded layered magnesium borate was synthesized by low temperature hydrothermal method with magnesium chloride (MgCl2•6H2O), borax (Na2B4O7•10H2O) as reactants, oleic acid as the embedded agent. The structure and morphologies of the synthesized samples were investigated by X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy and Fourier transform infrared spectroscopy techniques. The results suggest that the structure of oleic acid embedded magnesium borate is layered-by-layered, and the interlayer spacing was about 6 nm. And the sizes of the lamellar magnesium borate are in the range of 100 nm to 200 nm. The average pore diameter of the prepared product is 22.4 nm. The BET surface area and pore volume are 50.31 m2/g and 0.275 m3/g, respectively. The molecular structure model of oleic acid embedded layered magnesium borate is established.


Sign in / Sign up

Export Citation Format

Share Document