scholarly journals Nanocellulose in Drug Delivery and Antimicrobially Active Materials

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2825
Author(s):  
Kaja Kupnik ◽  
Mateja Primožič ◽  
Vanja Kokol ◽  
Maja Leitgeb

In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.

2020 ◽  
Vol 11 ◽  
pp. 1450-1469
Author(s):  
Matías Guerrero Correa ◽  
Fernanda B Martínez ◽  
Cristian Patiño Vidal ◽  
Camilo Streitt ◽  
Juan Escrig ◽  
...  

The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.


2017 ◽  
Vol 73 (10) ◽  
pp. 657-660 ◽  
Author(s):  
Waldemar Lipiński ◽  
Jarosław Kaszewski ◽  
Zdzisław Gajewski ◽  
Marek Godlewski ◽  
Michał M. Godlewski

Recent decades have brought rapid development in the field of nanotechnology, which has led to applications of nanoparticles in many industries. Unique properties of nanoparticles and their biocompatibility increase their potential as drug carriers in drug-delivery systems. Prof. Marek Godlewski’s team from the Institute of Physics PAS has developed wide band-gap metal oxide nanoparticles doped with rare-earth metals for applications as fluorescent markers. The potential of those nanoparticles to cross the closed gut barrier after alimentary application has prompted their use in drug delivery systems. In this study, we show that after conjugation with a model bioactive substance, lectin (Phaseolus vulgaris), these nanoparticles retained their advantageous properties and, following oral administration (10 mg/ml in RO, 0.3 ml/mouse), entered a variety of organs in the mouse model. Internal organs collected at key time points were analysed under a scanning cytometer and a confocal microscope. The results show that the conjugation reduced, but did not completely abolish, the capacity of nanoparticles to penetrate physiological barriers (intestinal, blood-brain barrier) in the organism.


2020 ◽  
Author(s):  
Nandini Roy ◽  
Utshab Singha ◽  
Saurav Paul ◽  
Gaurav Kumar Pushp ◽  
Swagat Bardoloi ◽  
...  

Engineered nanoparticles have been used widely in various sectors such as electronics, construction, health, energy, remediation and agriculture etc. In recent years, Metal oxide nanoparticles have become one of the important class of materials for both material and biological applications. For instance, Zinc oxide Nanoparticles has its effective bioapplications in various fields including pharmaceuticals, medicines, and agriculture. At the same time, these are of high important due to their utilization in biosensors, cosmetics, drug-delivery systems etc. This book documents some important aspects of metal oxide nanomaterials highlighting their material, environmental and biological prospects.


2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 437
Author(s):  
Milena Álvarez-Viñas ◽  
Sandra Souto ◽  
Noelia Flórez-Fernández ◽  
Maria Dolores Torres ◽  
Isabel Bandín ◽  
...  

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


Chemosphere ◽  
2012 ◽  
Vol 88 (9) ◽  
pp. 1103-1107 ◽  
Author(s):  
Jasna Hrenovic ◽  
Jelena Milenkovic ◽  
Nina Daneu ◽  
Renata Matonickin Kepcija ◽  
Nevenka Rajic

2021 ◽  
pp. 113908
Author(s):  
Hadeel Kheraldine ◽  
Ousama Rachid ◽  
Abdella M Habib ◽  
Ala-Eddin Al Moustafa ◽  
Ibrahim F. Benter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document