Metal Oxide Nanomaterials

2020 ◽  
Author(s):  
Nandini Roy ◽  
Utshab Singha ◽  
Saurav Paul ◽  
Gaurav Kumar Pushp ◽  
Swagat Bardoloi ◽  
...  

Engineered nanoparticles have been used widely in various sectors such as electronics, construction, health, energy, remediation and agriculture etc. In recent years, Metal oxide nanoparticles have become one of the important class of materials for both material and biological applications. For instance, Zinc oxide Nanoparticles has its effective bioapplications in various fields including pharmaceuticals, medicines, and agriculture. At the same time, these are of high important due to their utilization in biosensors, cosmetics, drug-delivery systems etc. This book documents some important aspects of metal oxide nanomaterials highlighting their material, environmental and biological prospects.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2505
Author(s):  
Amal M. Al-Mohaimeed ◽  
Wedad A. Al-Onazi ◽  
Maha F. El-Tohamy

The current work described the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) and their electrocatalytic activity in the determination of minocycline hydrochloride (MCL). The unique features of metal oxide nanoparticles such as zinc oxide encourage the researchers to investigate the activity of metal oxide nanoparticles as remarkable semiconductor materials active in the electrochemical sensing determination. Herein, the suggested study displayed a comparative determination of minocycline hydrochloride using two conventional and modified ZnONPs-coated wire sensors. The recorded results showed the linear behavior of the enriched ZnONPs sensor over the 1.0 × 10−10–1.0 × 10−2 mol L−1 with respect to 1.0 × 10−6–1.0 × 10−2 mol L−1 for the conventional sensor. The two sensors are working in the pH range of 3–5 with regression equations EmV = (53.2 ± 0.5) log [MCL] + 448.8 and EmV = (58.7 ± 0.2) log [MCL] + 617.76 for conventional and enriched ZnONPs, respectively. The correlation coefficients were 0.9995 and 0.9998 for the previously mentioned sensors, respectively. The validity of the suggested analytical method was evaluated according to the recommended guidelines for methodology and drug analysis. The developed sensors were also used in the quantification of MCL in commercial formulations.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1662
Author(s):  
Mahadevamurthy Murali ◽  
Nataraj Kalegowda ◽  
Hittanahallikoppal G. Gowtham ◽  
Mohammad Azam Ansari ◽  
Mohammad N. Alomary ◽  
...  

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles’ research and applications are discussed.


2020 ◽  
Vol 11 (3) ◽  
pp. 3372-3376
Author(s):  
Shilpa Merlyn Jose ◽  
Hannah.R ◽  
Rajeshkumar S

To determine the antibacterial activity of Zinc oxide nanoparticles synthesised using Punica granatum and Elettaria cardamomum fruit extract against Lactobacillus. Punica granatum and Elettaria cardamomum have been known for their antimicrobial, antioxidant and anti-inflammatory activity. The phytochemicals present in these fruits have experimented for the preparation of various metal and metal oxide nanoparticles. Zinc oxide is a widely used metal oxide nanoparticle known for its good antimicrobial activity against a host of microbes. The current study was conducted to determine its effect against Lactobacillus, a bacteria known for its role in the progression of dental caries. Preparation of fruit extract mediated zinc oxide nanoparticles. Determining the characteristics of the nanoparticles using UV spectroscopy and SEM. Analysing the activity of these nanoparticles against Lactobacillus using agar well diffusion method. The zone of inhibition increased if the concentration of the fruit mediated zinc oxide nanoparticles increased. But it was incomparable to the standards. Hence, further studies need to be conducted using different concentration of Punica granatum and Elettaria cardamomum to determine the optimum fruit extract required for the preparation of the nanoparticles. The resultant nanoparticles can be used as an effective antimicrobial agent against Lactobacillus


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2825
Author(s):  
Kaja Kupnik ◽  
Mateja Primožič ◽  
Vanja Kokol ◽  
Maja Leitgeb

In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.


RSC Advances ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 3894-3906 ◽  
Author(s):  
S. M. Briffa ◽  
I. Lynch ◽  
V. Trouillet ◽  
M. Bruns ◽  
D. Hapiuk ◽  
...  

A simple synthesis protocol produced a library of PVP-capped metal oxide nanomaterials with systematically varied properties for hypothesis-driven nano(eco)toxicological studies.


2020 ◽  
Vol 28 (3) ◽  
pp. 294-310 ◽  
Author(s):  
Weitao Liu ◽  
Aurang Zeb ◽  
Jiapan Lian ◽  
Jiani Wu ◽  
Hongxia Xiong ◽  
...  

Over the past decade, the production and applications of metal-based and metal-oxide nanoparticles (MBNPs and MONPs, respectively) have increased significantly due to their enhanced physicochemical properties and biological activities when compared with their bulk parent materials. Once MBNPs and MONPs enter agricultural soil via direct or indirect pathways, they can interact with crop plants and thus pose a threat to both animal and human health through food chain pathways. Although many review articles on engineered nanoparticles have been published, few have focused on the interactions of MBNPs and MONPs with crop plants and their current applications. Therefore, we reviewed the sources and behaviors of MBNPs and MONPs in agricultural soil, physiological and biochemical effects of MBNPs and MONPs on plants, uptake, translocation of MBNPs and MONPs in crop plants, factors affecting the interaction between MBNPs and MONPs and plants, and the applications of MBNPs and MONPs. Lastly, we propose where the future research priorities should be focused to provide a better understanding of MBNPs and MONPs. This review will help to promote scientific research regarding MBNPs and MONPs and to understand the risks and benefits of their association with plants and will contribute to the advancement of nanotechnology.


2017 ◽  
Vol 73 (10) ◽  
pp. 657-660 ◽  
Author(s):  
Waldemar Lipiński ◽  
Jarosław Kaszewski ◽  
Zdzisław Gajewski ◽  
Marek Godlewski ◽  
Michał M. Godlewski

Recent decades have brought rapid development in the field of nanotechnology, which has led to applications of nanoparticles in many industries. Unique properties of nanoparticles and their biocompatibility increase their potential as drug carriers in drug-delivery systems. Prof. Marek Godlewski’s team from the Institute of Physics PAS has developed wide band-gap metal oxide nanoparticles doped with rare-earth metals for applications as fluorescent markers. The potential of those nanoparticles to cross the closed gut barrier after alimentary application has prompted their use in drug delivery systems. In this study, we show that after conjugation with a model bioactive substance, lectin (Phaseolus vulgaris), these nanoparticles retained their advantageous properties and, following oral administration (10 mg/ml in RO, 0.3 ml/mouse), entered a variety of organs in the mouse model. Internal organs collected at key time points were analysed under a scanning cytometer and a confocal microscope. The results show that the conjugation reduced, but did not completely abolish, the capacity of nanoparticles to penetrate physiological barriers (intestinal, blood-brain barrier) in the organism.


CrystEngComm ◽  
2018 ◽  
Vol 20 (35) ◽  
pp. 5091-5107 ◽  
Author(s):  
A. V. Nikam ◽  
B. L. V. Prasad ◽  
A. A. Kulkarni

Metal oxide nanoparticles are an important class of nanomaterials that have found several applications in science and technology.


Sign in / Sign up

Export Citation Format

Share Document