scholarly journals Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

2020 ◽  
Vol 11 ◽  
pp. 1450-1469
Author(s):  
Matías Guerrero Correa ◽  
Fernanda B Martínez ◽  
Cristian Patiño Vidal ◽  
Camilo Streitt ◽  
Juan Escrig ◽  
...  

The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.

2020 ◽  
Vol 20 (6) ◽  
pp. 3303-3339 ◽  
Author(s):  
Saee Gharpure ◽  
Aman Akash ◽  
Balaprasad Ankamwar

The field of nanotechnology elaborates the synthesis, characterization as well as application of nanomaterials. Applications of nanoparticles in various fields have interested scientists since decades due to its unique properties. Combination of pharmacology with nanotechnology has helped in development of newer antimicrobial agents in order to control the ever increasing multidrug resistant micro-organisms. Properties of metal and metal oxide nanoparticles like silver, gold, titanium dioxide as well as magnesium oxide as antimicrobial agents are very well known. This review elaborates synthesis methods and antimicrobial mechanisms of various metal as well as metal oxide nanoparticles for better understanding in order to utilize their potentials in various biomedical applications.


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2825
Author(s):  
Kaja Kupnik ◽  
Mateja Primožič ◽  
Vanja Kokol ◽  
Maja Leitgeb

In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.


2019 ◽  
Vol 19 (4) ◽  
pp. 292-304 ◽  
Author(s):  
Maia Merlani ◽  
Vakhtang Barbakadze ◽  
Lela Amiranashvili ◽  
Lali Gogilashvili ◽  
Vladimir Poroikov ◽  
...  

Background: Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. Objective: The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. Methods: In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. Results: Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). Conclusion: Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents.


2018 ◽  
Vol 18 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Michelyne Haroun ◽  
Christophe Tratrat ◽  
Katerina Kositzi ◽  
Evangelia Tsolaki ◽  
Anthi Petrou ◽  
...  

Background: Thiazole and benzothiazole derivatives, as well as thiazolidinones are very important scaffolds in medicinal chemistry. Literature has revealed that they possess a wide spectrum of biological activities including antimicrobial activity. Objective: The goal of this paper is the designing of new benzothiazole based thiazolidinones and the evaluation of their biological activities. Methods: The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was evaluated using the method of microdilution. Results: The twelve newly synthesized compounds showed antimicrobial properties. All compounds appeared to be more active than ampicillin in most studied strains and in some cases, more active than streptomycin. Antifungal activity, in most cases was also better than the reference drugs ketoconazole and bifonazole. The prediction of cytotoxicity revealed that the synthesized compounds were not toxic (LD50 350-1000 mg/kg of body weight). Docking studies on the antibacterial activity confirmed the biological results. Conclusion: The twelve new compounds were synthesized and studied for their antimicrobial activity. The compounds appeared to be promising antimicrobial agents and could be the lead compounds for new, more potent drugs. According to the docking prediction, the compounds could be MurB inhibitors.


Change in lifestyle of humans in this present generation with huge dependence on packaging materials has encouraged several studies on development of new variety of packaging materials. Emphasis on replacement of existing non-biodegradable packaging materials with biodegradable materials paved the way for the use of biopolymers. Lack of properties, such as thermal stability and mechanical strength in biopolymers led to the development of biopolymer nanocomposites by adding metal/metal oxide nanoparticles as fillers into the biopolymers. Metal/metal oxide nanoparticles improve mechanical/tensile strength, thermal stability as well as antimicrobial properties of the binding and receiving polymer matrix. Bio-mediated synthesis of metal/metal oxide nanoparticles result in the development of novel packaging materials at a low cost and without releasing hazardous wastes into the environments. Novel packaging materials with metal/metal oxide nanoparticles as additives are capable of increasing the shelf life of food, in certain cases they act as indicators of quality food inside the package. Summarily, this present chapter focuses on bio-mediated synthesis of various metal/metal oxide nanoparticles and their applications in food packaging.


Author(s):  
M. S. Giri Nandagopal ◽  
E. Nakkeeran ◽  
R. Prasanna Venkatesh ◽  
N. Selvaraju

AbstractInterest in employing metal oxide nanoparticles as antimicrobial agents is growing. Among various nanoparticles, CuO nanoparticles (NP) has gained vast attention among researchers due to their unusual properties. Various studies has been reported on the antimicrobial activity of CuO NP on microbes. But, no studies can be found on designing suitable reactor for this system. In this study, conventional batch, continuous tubular reactor (CTR), and advanced microfluidic (MF) reactor systems were employed to carry out antimicrobial activity of CuO NP on E Coli..From the experimental results, we observe that minimum cell viability obtained in the batch reactor was about 48.6 %. CTR provided better contact between CuO NPs and E-Coli cells, hence cell viability of 45.3 % was obtained which is lesser than that of batch system. While, in the microfluidic system, when the contact between CuO NPs and E-Coli cells were increased by scaling down the diameter of the channels from 1,200 μm to 600 μm the efficiency of the cell lysis by CuO NP increased from 68.77 % to 95 %. This drastic improvement in cell lysis rates from batch to microchannel is attributed to high surface area to volume ratio and active internal circulation in microfluidic flows. Hence, microfluidic system, which operates at negligible gravity was found to be more efficient in carrying out microbial cell lysis using CuO NP nanoparticles.


2021 ◽  
Vol 10 (33) ◽  
pp. 2803-2808
Author(s):  
Hema Kanathila ◽  
Ashwin M. Pangi ◽  
Suvidha Patil ◽  
Shilpa Shirlal ◽  
Rahul Jaiswal

Oral cavity contains numerous microorganisms. Among them, some are pathogenic and cause infections. Hence to control and prevent such infections, a lot of research has been conducted on different materials using various advanced techniques. Nanotechnology and nanoscience have emerged in the recent years exploring the antimicrobial effects of metal nanoparticles. Metal oxide nanoparticles have shown good results against microorganisms. Distinct physical, chemical and biologic properties of metallic oxide nanoparticles make them efficient antimicrobial agents. Both the size and high surface to volume ratio have been considered as the reason for their microbicidal efficacy. Metallic oxide nanoparticles show high durability and less cell toxicity compared to organic nanoparticles. And this positive response of metallic oxide nanoparticles make their use in medical and dental fields more promising. Most of the infections of oral cavity are fungal, bacterial or viral. In dentistry, microorganisms are believed to cause failures of many treatment by causing infections. To achieve a long-term success of treatment rendered, various possibilities have been studied. Application of this nanotechnology in dentistry termed as nano dentistry, has brought many effective changes in the control of oral infections as well as changes in the dental materials. Various metallic nanoparticles like silver nanoparticles, zinc oxide nanoparticles etc., have been used as well as modified in order to apply in dentistry. Many researches have been carried out by incorporating metallic oxide nanoparticles with dental materials which have shown excellent antimicrobial effectiveness. This review focuses on metal and metallic oxide nanoparticles and their effectiveness as antimicrobials and their various applications in dental field. KEY WORDS Nanoparticles, Antimicrobials, Metallic Oxides, Dental Materials, Dentistry


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 345
Author(s):  
Daniele Valerini ◽  
Loredana Tammaro ◽  
Roberta Vitali ◽  
Gloria Guillot ◽  
Antonio Rinaldi

Porous scaffolds made of biocompatible and environmental-friendly polymer fibers with diameters in the nano/micro range can find applications in a wide variety of sectors, spanning from the biomedical field to textiles and so on. Their development has received a boost in the last decades thanks to advances in the production methods, such as the electrospinning technique. Conferring antimicrobial properties to these fibrous structures is a primary requirement for many of their applications, but the addition of antimicrobial agents by wet methods can present a series of drawbacks. In this work, strong antibacterial action is successfully provided to electrospun polycaprolactone (PCL) scaffolds by silver (Ag) addition through a simple and flexible way, namely the sputtering deposition of silver onto the PCL fibers. SEM-EDS analyses demonstrate that the polymer fibers get coated by Ag nanoparticles without undergoing any alteration of their morphological integrity upon the deposition process. The influence on wettability is evaluated with polar (water) and non-polar (diiodomethane) liquids, evidencing that this coating method allows preserving the hydrophobic character of the PCL polymer. Excellent antibacterial action (reduction > 99.995% in 4 h) is demonstrated against Escherichia coli. The easy fabrication of these PCL-Ag mats can be applicable to the production of biomedical devices, bioremediation and antifouling systems in filtration, personal protective equipment (PPE), food packaging materials, etc.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


Sign in / Sign up

Export Citation Format

Share Document