scholarly journals Preparation and Characterization of Starch/Empty Fruit Bunch-Based Bioplastic Composites Reinforced with Epoxidized Oils

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Jianlei Yang ◽  
Yern Chee Ching ◽  
Cheng Hock Chuah ◽  
Nai-Shang Liou

This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites’ water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 384
Author(s):  
Juan Tirado-Gallegos ◽  
Paul Zamudio-Flores ◽  
José Ornelas-Paz ◽  
Claudio Rios-Velasco ◽  
Guadalupe Olivas Orozco ◽  
...  

Apple starch films were obtained from apples harvested at 60, 70, 80 and 90 days after full bloom (DAFB). Mechanical properties and water vapor permeability (WVP) were evaluated. The apple starch films at 70 DAFB presented higher values in the variables of tensile strength (8.12 MPa), elastic modulus (3.10 MPa) and lower values of water vapor permeability (6.77 × 10−11 g m−1 s−1 Pa−1) than apple starch films from apples harvested at 60, 80 and 90 DAFB. Therefore, these films were chosen to continue the study incorporating ellagic acid (EA). The EA was added at three concentrations [0.02% (FILM-EA0.02%), 0.05% (FILM-EA0.05%) and 0.1% (FILM-EA0.1%) w/w] and compared with the apple starch films without EA (FILM-Control). The films were characterized by their physicochemical, optical, morphological and mechanical properties. Their thermal stability and antioxidant capacity were also evaluated. The FILM-Control and FILM-EA0.02% showed a uniform surface, while FILM-EA0.05% and FILM-EA0.1% showed a rough surface and insoluble EA particles. Compared to FILM-Control, EA modified the values of tensile strength, elasticity modulus and elongation at break. The antioxidant capacity increased as EA concentration did. EA incorporation allowed obtaining films with higher antioxidant capacity, capable of blocking UV light with better mechanical properties than film without EA.



2013 ◽  
Vol 8 (2) ◽  
pp. 155892501300800 ◽  
Author(s):  
Weixing Xu ◽  
Yichao Lu ◽  
Bin Wang ◽  
Jianjun Xu ◽  
Guangdou Ye ◽  
...  

A convenient method for preparing the thermal regulating fibers with high latent heat has been developed. PVA thermal regulating fibers were prepared via a wet spinning process, with paraffin being the phase change material. The structures and properties of these fibers were investigated by SEM, TGA, DSC and tensile strength tester. With the paraffin content in the fibers increasing from 30wt% to 70wt%, the latent heat of the fibers increases from 42.8J/g to 87.8J/g and the paraffin phase structures change from separation into partial interconnection. PVA matrix can not wrap paraffin effectively when the paraffin content increases up to 50wt%, so the paraffin loss in the spinning process increases. The thermal stability of fibers with low paraffin content is better than that of fibers with high paraffin content. After 100 heat-and-cool cycles, the latent heat of fibers lose a little. The tensile strength of these thermal regulating fibers is good enough for application in wrapping, filling, and nonwovens.



2014 ◽  
Vol 716-717 ◽  
pp. 28-31
Author(s):  
Chao Zhang ◽  
Xiao Fei Guo ◽  
Yue Ma ◽  
Xiao Yan Zhao

The effect of FA and OFA on performances of the soybean protein-isolate/chitosan composite films was evaluated. The FA and OFA enhanced the tensile strength and thermal stability of the composite films significantly, while they reduced the water vapor permeability to 60.3 % and 72.8 % of the control respectively. Moreover, the OFA was more effective to enhance the tensile strength of the composite films than the FA.



Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 796
Author(s):  
Yin-Ping Zhang ◽  
Xin Wang ◽  
Yi Shen ◽  
Kiran Thakur ◽  
Jian-Guo Zhang ◽  
...  

In this study, bio-nanocomposite films containing different proportions of ginger essential oil (GEO), chitosan (Ch), and montmorillonite (MMT) were prepared and characterized, and the antibacterial effect of bio-nanocomposite films on chilled beef was evaluated. Fourier transform infrared analysis showed a series of intense interactions among the components of the bio-nanocomposite films. The infiltration of GEO increased the thickness of the film, reduced the tensile strength of the film, and increased the percentage of breaking elongation and the water vapor permeability. The migration of phenols in the films began to increase exponentially and reached equilibrium at about 48 h. The bio-nanocomposite films (Ch +0.5% GEO group, and Ch + MMT + 0.5% GEO group) effectively delayed the rise of pH, hue angle, and moisture values of chilled beef with time and slowed down the lipid oxidation and the growth of surface microorganisms on chilled beef. Altogether, the prepared biological nanocomposites can be used as promising materials to replace commercial and non-degradable plastic films.



e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.



2017 ◽  
Vol 12 (4) ◽  
pp. 155892501701200 ◽  
Author(s):  
Rong Zhou ◽  
Xueli Wang ◽  
Jianyong Yu ◽  
Zhenzhen Wei ◽  
Yu Gao

This paper reports a hollow copolyester fiber modified with polyethylene glycol and sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate, abbreviated as ECDP-H, which has the potential to be a replacement for cotton. The objective evaluation of luster (contrast glossiness) and Kawabata Evaluation System for Fabrics (KES-F) (four Primary Hand Parameters and the Total Hand) of ECDP-H, PET and cotton fabrics are studied in order to investigate the cotton-like appearance of the ECDP-H. The results of moisture regain and dynamic moisture absorption values obtained indicate that the hydrophilicity of the ECDP-H fabric is better than that of PET fabric. The thermo-physiological performance for three fabrics is determined using air and water vapor permeability, wicking, warm-cooling feeling, thermal resistance and vapor resistance. The results show that the ECDP-H fabric has better hand and comfort properties than cotton.



2000 ◽  
Vol 9 (1) ◽  
pp. 23-35 ◽  
Author(s):  
P. TANADA-PALMU ◽  
H. HELÉN ◽  
L. HYVÖNEN

Edible films from wheat gluten were prepared with various amounts of glycerol as a plasticizer. Water vapor permeability, oxygen permeability, tensile strength and percentage elongation at break at different water activities ( aw ) were measured. Films with low amounts of glycerol had lower water vapor and oxygen permeabilities, higher tensile strength and lower elongation at break. Wheat gluten coatings reduced weight loss during two weeks of storage for cherry tomatoes and sharon fruits compared to uncoated controls. A bilayer film of wheat gluten and beeswax significantly lowered weight loss from coated cheese cubes compared to single layer coating of wheat gluten.;



2021 ◽  
Vol 60 (1) ◽  
Author(s):  
Gema Morales-Olán ◽  
María Antonieta Ríos-Corripio ◽  
Aleida Selene Hernández-Cázares ◽  
Placido Zaca-Morán ◽  
Silvia Luna-Suárez ◽  
...  

Research background. Amaranth flour (Amaranthus hypochondriacus) produces films with excellent barrier properties against water vapor, allowing food preservation, but the mechanical properties are poor versus to synthetic films. One strategy to improve these properties is the incorporation of nanoparticles. The particles can also serve as a vehicle for the addition of antioxidants agents into the films. The objective of this work was to optimize the formulation for preparation of amaranth flour films treated with antioxidant chia (Salvia hispanica L.) extract-loaded chitosan particles using RSM. Experimental approach. Chitosan nanoparticles with the extract were synthesized by ionic gelation, and the films were made by the casting method. Three independent variables were assigned: amaranth flour (4-6 %), glycerol (25-35 %), and chitosan nanoparticles loaded with the chia extract (0-0.75 %). We then evaluated the physical (thickness), mechanical (tensile strength, Young´s modulus, and elongation), barrier (water vapor permeability, moisture, and water solubility), and antioxidant properties of the films. The experimental results of the properties were analyzed using a Box-Behnken experimental design generating 15 runs with three replicates at the central point. Results and conclusions. Second and third order polynomial models were obtained from the ANOVA analysis of the evaluated responses, and high coefficients of determination were found (0.91-1.0). The films presented a water vapor permeability of 0.82-2.39·10-7 (g·mm)/(Pa·s·m2), a tensile strength of 0.33-1.63 MPa, and antioxidant activity of 2.24-5.65 %. The variables had different effects on the films: The glycerol negatively affected their properties, and the permeability values increased with amaranth flour concentration. The nanoparticles improved the mechanical, barrier, and antioxidant properties of the films versus films without nanosystems. The optimal formulation was 4 % amaranth flour, 25 % of glycerol, and 0.36 % of chitosan nanoparticles. The optimized films had better mechanical (1.62 MPa) properties, a low water vapor permeability value (0.91·10-7 (g·mm)/(Pa·s·m2)), and moderate antioxidant activity (6.43 %). Novelty and scientific contribution. The results show the effect of chitosan nanoparticles on the properties of amaranth flour films for the first time. The resulting equations are useful in the design of food packaging.



2017 ◽  
Vol 26 (5) ◽  
pp. 096369351702600 ◽  
Author(s):  
Wenjing Xia ◽  
Nianqing Zhu ◽  
Zhongbin Ni ◽  
Mingqing Chen

Biodegradable composites from poly (butylene succinate-co-butylene adipate) (PBSA) and Taihu Lake (Wuxi, China) blue algae were prepared by melt blending. The property and structure of biocomposites were investigated. By adding extra amount of water to blue algae, the formulated blue algae acted as a plastic in the composites during blending, and exhibited a reinforcing effect on the PBSA matrix. With increasing blue algae content, the thermal stability of the composites decreased; the tensile strength at break and elongation at break of the composites reduced, but the Young's modulus of the composites increased. However, the composite with 30% blue algae loading still exhibited good mechanical performance (tensile strength at break of 21.3 MPa, elongation at break of 180%). The fabrication of value-added PBSA/algae composites appeared as an effective approach to reduce the secondary environmental pollution of Taihu blue algae.





Sign in / Sign up

Export Citation Format

Share Document