scholarly journals Equine Tenocyte Seeding on Gelatin Hydrogels Improves Elongated Morphology

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 747
Author(s):  
Marguerite Meeremans ◽  
Lana Van Damme ◽  
Ward De Spiegelaere ◽  
Sandra Van Vlierberghe ◽  
Catharina De Schauwer

(1) Background: Tendinopathy is a common injury in both human and equine athletes. Representative in vitro models are mandatory to facilitate translation of fundamental research into successful clinical treatments. Natural biomaterials like gelatin provide favorable cell binding characteristics and are easily modifiable. In this study, methacrylated gelatin (gel-MA) and norbornene-functionalized gelatin (gel-NB), crosslinked with 1,4-dithiotreitol (DTT) or thiolated gelatin (gel-SH) were compared. (2) Methods: The physicochemical properties (1H-NMR spectroscopy, gel fraction, swelling ratio, and storage modulus) and equine tenocyte characteristics (proliferation, viability, and morphology) of four different hydrogels (gel-MA, gel-NB85/DTT, gel-NB55/DTT, and gel-NB85/SH75) were evaluated. Cellular functionality was analyzed using fluorescence microscopy (viability assay and focal adhesion staining). (3) Results: The thiol-ene based hydrogels showed a significantly lower gel fraction/storage modulus and a higher swelling ratio compared to gel-MA. Significantly less tenocytes were observed on gel-MA discs at 14 days compared to gel-NB85/DTT, gel-NB55/DTT and gel-NB85/SH75. At 7 and 14 days, the characteristic elongated morphology of tenocytes was significantly more pronounced on gel-NB85/DTT and gel-NB55/DTT in contrast to TCP and gel-MA. (4) Conclusions: Thiol-ene crosslinked gelatins exploiting DTT as a crosslinker are the preferred biomaterials to support the culture of tenocytes. Follow-up experiments will evaluate these biomaterials in more complex models.

2021 ◽  
Vol 22 (6) ◽  
pp. 2962
Author(s):  
Louise Orcheston-Findlay ◽  
Samuel Bax ◽  
Robert Utama ◽  
Martin Engel ◽  
Dinisha Govender ◽  
...  

The life expectancy of patients with high-grade glioma (HGG) has not improved in decades. One of the crucial tools to enable future improvement is advanced models that faithfully recapitulate the tumour microenvironment; they can be used for high-throughput screening that in future may enable accurate personalised drug screens. Currently, advanced models are crucial for identifying and understanding potential new targets, assessing new chemotherapeutic compounds or other treatment modalities. Recently, various methodologies have come into use that have allowed the validation of complex models—namely, spheroids, tumouroids, hydrogel-embedded cultures (matrix-supported) and advanced bioengineered cultures assembled with bioprinting and microfluidics. This review is designed to present the state of advanced models of HGG, whilst focusing as much as is possible on the paediatric form of the disease. The reality remains, however, that paediatric HGG (pHGG) models are years behind those of adult HGG. Our goal is to bring this to light in the hope that pGBM models can be improved upon.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


2020 ◽  
Author(s):  
Vittorio Picchio ◽  
Vittoria Cammisotto ◽  
Francesca Pagano ◽  
Roberto Carnevale ◽  
Isotta Chimenti

Basic and translational research on lung biology and pathology can greatly benefit from the development of 3D in vitro models with physiological relevance. Lung organoids and lungs-on-chip allow the creation of different kinds of in vitro microenvironments, that can be useful for the elucidation of novel pathogenetic pathways, for example concerning tissue fibrosis in chronic diseases. Moreover, they represent important translational models for the identification of novel therapeutic targets, and for preliminary testing of new drugs. In this chapter, we provide a selected overview of recent studies on innovative 3D in vitro models that have enhanced our knowledge on chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), particularly concerning oxidative stress and pro-fibrotic pathogenetic mechanisms. Despite several limitations, these complex models must be considered as complementary in all respects to in vivo studies on animal models and clinical research.


2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

1997 ◽  
Vol 77 (05) ◽  
pp. 0949-0954 ◽  
Author(s):  
J Prins ◽  
F R Lues ◽  
Y Y van der Hoek ◽  
J J.P Kastelein ◽  
B N Bouma ◽  
...  

SummaryElevated plasma levels of lipoprotein(a) [Lp(a)] represent a significant independent risk factor for the development of atherosclerosis. Interindividual levels of apo(a) vary over 1000-fold and are mainly due to inheritance that is linked to the locus of the apolipoprotein(a) [apo(a)] gene. The apo(a) gene encodes multiple repeats of a sequence exhibiting up to 85% DNA sequence homology with plasminogen kringle IV (K.IV), a lysine binding domain. In our search for sequence polymorphisms in the K.IV coding domain, we identified a polymorphism predicting a Thr→Pro substitution located at amino acid position 12 of kringle IV type 8 of apo(a). The functional and clinical significance of this polymorphism was analysed in a case-control study and by comparing the in vitro lysine binding characteristics of the two Lp(a) subtypes.The case-control study (involving 153 subjects having symptomatic atherosclerosis and 153 age and gender matched normolipidemic controls) revealed an overall allele frequency for the Thr12-→Pro substitution in kringle IV type 8 of 14% and a negative association between presence of the Pro12-subtype and symptomatic atherosclerosis (p <0.03). The in vitro lysine binding studies, using Lp(a) isolated from subjects homozygous for either Thr12 or Pro12 in K.IV type 8, revealed comparable lysine-Sepharose binding fractions for the two subtypes. The binding affinity (Kd) for immobilised plasmin degraded des- AA-fibrin (DesafibTM-X) was also comparable for the two subtypes, however a decreased maximal attainable binding (Bmax) for immobilised desafibTM-X was observed for the Pro12-subtype Lp(a).


1985 ◽  
Vol 53 (01) ◽  
pp. 095-098 ◽  
Author(s):  
C R Jones ◽  
R McCabe ◽  
C A Hamilton ◽  
J L Reid

SummaryPaired blood samples were obtained from mothers (venous) and babies (cord venous blood) at the time of delivery by caesarean section under epidural anaesthetic. Fetal platelets failed to aggregate in response to adrenaline in vitro although adrenaline could potentiate the threshold response to adenosine diphosphate (1 μM). Fetal platelet responses to collagen and 8 Arg vasopressin did not differ significantly from maternal responses. Maternal and fetal platelets also showed similar inhibition of aggregation after activation of adenylate cyclase (PGE1 and parathormone), in contrast to the inhibition of adenylate cyclase by adrenaline.Alpha2 adrenoceptors were investigated using [3H] yohimbine binding receptor number and were reduced modestly but significantly on fetal compared to maternal platelets. The failure of fetal platelet aggregation in response to adrenaline appears to be related to a failure of receptor coupling and may represent a delayed maturation of fetal platelet alpha receptors or a response- to increased circulating catecholamines during birth.


Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


Sign in / Sign up

Export Citation Format

Share Document