scholarly journals Combining Sandblasting, Alkaline Etching, and Collagen Immobilization to Promote Cell Growth on Biomedical Titanium Implants

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2550
Author(s):  
Chia-Fei Liu ◽  
Kai-Chun Chang ◽  
Ying-Sui Sun ◽  
Diem Thuy Nguyen ◽  
Her-Hsiung Huang

Our objective in this study was to promote the growth of bone cells on biomedical titanium (Ti) implant surfaces via surface modification involving sandblasting, alkaline etching, and type I collagen immobilization using the natural cross-linker genipin. The resulting surface was characterized in terms topography, roughness, wettability, and functional groups, respectively using field emission scanning electron microscopy, 3D profilometry, and attenuated total reflection-Fourier transform infrared spectroscopy. We then evaluated the adhesion, proliferation, initial differentiation, and mineralization of human bone marrow mesenchymal stem cells (hMSCs). Results show that sandblasting treatment greatly enhanced surface roughness to promote cell adhesion and proliferation and that the immobilization of type I collagen using genipin enhanced initial cell differentiation as well as mineralization in the extracellular matrix of hMSCs. Interestingly, the nano/submicro-scale pore network and/or hydrophilic features on sandblasted rough Ti surfaces were insufficient to promote cell growth. However, the combination of all proposed surface treatments produced ideal surface characteristics suited to Ti implant applications.

1990 ◽  
Vol 580 (1 Structure, Mo) ◽  
pp. 526-528 ◽  
Author(s):  
MARIAN F. YOUNG ◽  
AGNES A. DAY ◽  
PAMELA GEHRON ROBEY ◽  
JOHN D. TERMINE
Keyword(s):  

1984 ◽  
Vol 99 (2) ◽  
pp. 607-614 ◽  
Author(s):  
S W Whitson ◽  
W Harrison ◽  
M K Dunlap ◽  
D E Bowers ◽  
L W Fisher ◽  
...  

We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro.


2019 ◽  
Vol 9 (12) ◽  
pp. 1770-1775
Author(s):  
Danhai Wu ◽  
Kan Wang

The oxidative stress process can affect bone marrow mesenchymal stem cells (BMSCs) differentiation. Interleukin (IL-15) regulates fat differentiation of BMSCs. However, the role of IL-15 in osteogenic/adipogenic differentiation of BMSCs under oxidative stress remains unclear. Rat BMSCs were cultured and randomly divided into control group; oxidative stress group and IL-15 treatment group followed by analysis of IL-15 secretion by ELISA, expression of osteocalcin, type I collagen, RUNX2 and OPN mRNA as well as FABP4 and PPARγ 2 by Real time PCR, ALP activity, ROS content and SOD activity, and expression of PI3K/Akt/mTOR signaling proteins by Western blot. In oxidative stress group, IL-15 secretion was significantly decreased, osteocalcin, type I collagen, RUNX2 and OPN mRNA expression was reduced, along with deceased ALP activity and SOD activity, increased ROS content and FABP4 and PPARγ 2 protein expression as well as decreased expression of p-AKT and mTOR in comparison of control (P < 0 05). IL-15 treatment on oxidative stress BMSCs significantly increased IL-15 secretion and the expression of osteocalcin, type I collagen, RUNX2 and OPN mRNA, along with increased ALP activity and SOD activity, decreased FABP4 and PPAR 2 protein expression and ROS content as well as increased expression of p-AKT and mTOR (P < 0 05). IL-15 secretion was reduced in BMSCs under oxidative stress. Promoting IL-15 secretion can improve redox balance through PI3K/Akt/mTOR signaling pathway, promote osteogenic differentiation of BMSCs.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hongliang He ◽  
Xiaozhen Liu ◽  
Liang Peng ◽  
Zhiliang Gao ◽  
Yun Ye ◽  
...  

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimickedin vivoliver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.


2012 ◽  
Vol 91 (12) ◽  
pp. 1135-1140 ◽  
Author(s):  
I.S. Kim ◽  
Y.M. Song ◽  
B. Lee ◽  
S.J. Hwang

Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chen Qi ◽  
Xu Xiaofeng ◽  
Wang Xiaoguang

Objective. To investigate the effects of Toll-like receptors in stem cell osteogenesis.Methods. Bone marrow mesenchymal stem cells (BMSCs) were divided into the blank group, the TLR-3 activated group, and the TLR-4 activated group. After 10 days’ osteogenic-promoting culture, expression of type I collagen and osteocalcin was determined by Western blot. Osteoblasts (OBs) were also divided into three groups mentioned above. Alkaline phosphatase (ALP) and alizarin red staining were performed after 10 days’ ossification-inducing culture. The expression ofβ-catenin was investigated by Western blot.Results. Both the TLR-3 and TLR-4 activated groups had increased expression of type I collagen and osteocalcin; the effect of TLR-4 was stronger. The intensity of alizarin red and ALP staining was strongest in the TLR-3 activated group and weakest in the TLR-4 activated group. Activation of TLR-4 decreased the expression ofβ-catenin, whilst activation of TLR-3 did not affect the expression ofβ-catenin.Discussion. This study suggested that both TLR-3 and -4 promoted differentiation of BMSCs to OBs. TLR-3 had an inducing effect on the ossification of OBs to osteocytes, whilst the effect of TLR-4 was the opposite because of its inhibitory effect on the Wnt signaling pathway.


2021 ◽  
Vol 11 (8) ◽  
pp. 1630-1635
Author(s):  
Bin Wu ◽  
Fenghua Bai ◽  
Jianping Lin ◽  
Guangji Wang ◽  
Wentao Cai ◽  
...  

Aging affects bone marrow mesenchymal stem cells (BMSC) differentiation. PTEN12 regulates cell proliferation and apoptosis. However, whether PTEN12 affects BMSCs osteogenic differentiation during aging is unknown. Two BMSCs derived from Zempster24−/− (senescence) and Zempster24+/+ (normal) mice were cultured in vitro. Real-time PCR analysis was used to analyze PTEN12 expression. PTEN12 siRNA was transfected into senescent Zempster24-/-BMSCs and after 14 days of osteogenic induction, cell proliferation was analyzed by MTT method along with measuring expression of osteocalcin, type I collagen, RUNX2 and OPN by Real time PCR, ALP activity, and TGFβ/smad signaling protein expression by Western blot. Compared to normal BMSCs, PTEN12 level in aging BMSCs was significantly elevated, osteocalcin, type I collagen, RUNX2 and OPN mRNA level was decreased along with reduced ALP activity and TGFβ1 and Smad2 expression (P < 0.05). PTEN12 siRNA transfection into senescent BMSCs significantly down-regulated PTEN12, upregulated osteocalcin, type I collagen, RUNX2 and OPN mRNA, increased ALP activity and TGFβ1 and Smad2 expression (P <0.05). Aging increases PTEN12 level and inhibits BMSCs osteogenic differentiation. Down-regulation of PTEN12 in BMSCs during aging can promote BMSCs osteogenic differentiation by regulating TGFβ/smad signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document