scholarly journals Development and Characterization of Pectin Films with Salicornia ramosissima: Biodegradation in Soil and Seawater

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2632
Author(s):  
Daniela G. M. Pereira ◽  
Jorge M. Vieira ◽  
António A. Vicente ◽  
Rui M. S. Cruz

Pectin films were developed by incorporating a halophyte plant Salicornia ramosissima (dry powder from stem parts) to modify the film’s properties. The films’ physicomechanical properties, Fourier-transform infrared spectroscopy (FTIR), and microstructure, as well as their biodegradation capacity in soil and seawater, were evaluated. The inclusion of S. ramosissima significantly increased the thickness (0.25 ± 0.01 mm; control 0.18 ± 0.01 mm), color parameters a* (4.96 ± 0.30; control 3.29 ± 0.16) and b* (28.62 ± 0.51; control 12.74 ± 0.75), water vapor permeability (1.62 × 10−9 ± 1.09 × 10−10 (g/m·s·Pa); control 1.24 × 10−9 ± 6.58 × 10−11 (g/m·s·Pa)), water solubility (50.50 ± 5.00%; control 11.56 ± 5.56%), and elongation at break (5.89 ± 0.29%; control 3.91 ± 0.62%). On the other hand, L* (48.84 ± 1.60), tensile strength (0.13 ± 0.02 MPa), and Young’s modulus (0.01 ± 0 MPa) presented lower values compared with the control (L* 81.20 ± 1.60; 4.19 ± 0.82 MPa; 0.93 ± 0.12 MPa), while the moisture content varied between 30% and 45%, for the film with S. ramosissima and the control film, respectively. The addition of S. ramosissima led to opaque films with relatively heterogeneous microstructures. The films showed also good biodegradation capacity—after 21 days in soil (around 90%), and after 30 days in seawater (fully fragmented). These results show that pectin films with S. ramosissima may have great potential to be used in the future as an eco-friendly food packaging material.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2569
Author(s):  
Mia Kurek ◽  
Nasreddine Benbettaieb ◽  
Mario Ščetar ◽  
Eliot Chaudy ◽  
Maja Repajić ◽  
...  

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4252
Author(s):  
Slađana Davidović ◽  
Miona Miljković ◽  
Milan Gordic ◽  
Gustavo Cabrera-Barjas ◽  
Aleksandra Nesic ◽  
...  

The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45–8.81) ∗ 10−12 g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 °C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.


2015 ◽  
Vol 4 (2) ◽  
pp. 103-14
Author(s):  
Gholamreza Kavoosi ◽  
Amin Shakiba ◽  
Mahmood Ghorbani ◽  
Seyed Mohammad Mahdi Dadfar ◽  
Amin Mohammadi Purfard

Background: Development of biodegradable and biocompatible films based on protein polymer with strong antioxidant and antibacterial activities has gradually obtained extensive concern in the world. In this study, the improvement of gelatin film properties incorporated with Ferula assa-foetida essential oil (FAO) as a potential antioxidant/antibacterial wound dressing film was investigated. Materials and Methods: Gelatin films were prepared from gelatin solutions (10% w/v) containing different concentration of FAO. The effect of FAO addition on water solubility, water swelling, water vapor permeability, mechanical behavior, light barrier properties as well as antioxidant and antibacterial activities of the films were examined. Results: Water solubility, water swelling and water vapor permeability for pure gelatin films were 29 ± 1.6%, 396 ± 8%, 0.23 ± 0.018 g.mm/m2.h, respectively. Incorporation of FAO into gelatin films caused a significant decrease in swelling and increase in solubility and water vapor permeability. Tensile strength, elastic modulus and elongation at break for pure gelatin films were 4.2 ± 0.4 MPa, 5.8 ± 4.2 MPa, 128 ± 8 %, respectively. Incorporation of FAO into gelatin films caused a significant decrease in tensile strength and elastic modulus and increase in elongation at break of the films. Gelatin film showed UV-visible light absorbance ranging from 280 to 480 nm with maximum absorbance at 420 nm. Gelatin/FAO films also exhibited excellent antioxidant ad antimicrobial activities. Conclusions: Our results suggested that gelatin/FAO films could be used as active films due to their excellent antioxidant and antimicrobial features for different biomedical applications including wound-dressing materials.[GMJ.2015;4(2):103-14]


2011 ◽  
Vol 236-238 ◽  
pp. 2877-2880 ◽  
Author(s):  
Zun Ying Liu ◽  
Yuan Lu ◽  
Xiao Jun Ge ◽  
Ming Yong Zeng

Rheological and film forming properties of fish gelatin modified by transglutaminase (TGase) were investigated. The results indicated that the modified gels had higher gel strength of 101.4 g and 118.6 g with added TGase of 1% and 2 %, respectively. Elastic modulus (G'), viscous modulus (G'') of modified gels were significantly increased by the addition of 2% TGase. Tensile strength (TS) and elongation at break (EAB) of modified film increased by 38.2% and 137.1%, respectively, compared with the control film (P<0.05). The use of TGase significantly decreased water vapor permeability (WVP) of resulting film. Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and microstructure analysis denoted a certain degree of interference of TGase in the arrangement of gelatin molecules.


2021 ◽  
Vol 20 (2) ◽  
pp. 133-147
Author(s):  
Sajad Pirsa ◽  
Behzad Mohammadi

In this study, chitosan-polyaniline nanocomposite film was prepared in combination with different concentrations of polyaniline at various synthesis times. Surface morphology, antioxidant properties, water solubility, water vapor permeability (WVP), color properties and light transparency properties of the films were investigated. The size, shape and morphology of the synthesized particles were examined with scanning electron microscopy (SEM) technique. The results indicated that the synthesized polyaniline particles were spherical and in the range of 45–70 nm. The results obtained from the study of the effect of polyaniline on the physical properties of the chitosan film showed that increasing polyaniline concentration and synthesis time causes a decrease in the rate of the water solubility and water vapor permeability. This is an important factor in expanding its use in food packaging. The results of the colorimetric studies showed that the polyaniline sharply changed the surface color of the film. Polyaniline also increased antioxidant properties of composite film. Investigating the light transmission and transparency of the films showed that the polyaniline reduced the transparency and transmission of light, which could be used to package products that are susceptible to oxidation in the light.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Sijun Ma ◽  
Yuanrong Zheng ◽  
Ran Zhou ◽  
Ming Ma

Four kinds of edible composite films based on chitosan combined with additional substances (konjac glucomannan, cassava starch, maltodextrin and gelatin) and the addition of lysozyme were prepared and used as packaging materials for Mongolian cheese. The prepared composite films were evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. The physicochemical properties of all chitosan composite films, including thickness, viscosity, opacity, color, moisture content, water vapor permeability, tensile strength and elongation at break, were measured. The results show that Konjac glucomannan–chitosan composite film presented the strongest mechanical property and highest transparency. The cassava starch–chitosan composite film presented the highest water barrier property. The study on the storage characteristics of Mongolian cheese was evaluated at 4 °C. The results show that the cheese packaging by cassava starch–chitosan composite film presented better treatment performance in maintaining the quality, reducing weight loss and delayering microbial growth.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3389-3410 ◽  
Author(s):  
D. Hermawan ◽  
Tze Kiat Lai ◽  
Shima Jafarzadeh ◽  
Deepu A. Gopakumar ◽  
Hasan M. ◽  
...  

Seaweed bio-composite films with different proportion of Lemang and Semantan bamboo microcrystalline cellulose (MCC) were fabricated via solvent casting. The seaweed/MCC composite films were flexible, transparent, and slightly yellow. The MCC particles further enhanced mechanical properties and opacity of films. The thermal stability of seaweed films was moderately improved upon addition of bamboo MCC particles. Bamboo MCC was found to be comparable to commercial MCC in reducing the water vapor permeability (WVP), water solubility (WS), and moisture absorption capacity (MSC) of seaweed films. The tensile strength (TS) of seaweed films was increased by 20 to 23% with addition of up to 5% MCC particles. In addition, bamboo MCC efficiently reduced the WVP of seaweed films comparable to commercial MCC particles. The WS of seaweed films was decreased by 10 to 19% with addition of 1% MCC particles loading. Lemang bamboo MCC (SB-MCC) was remarkably reduced the moisture absorption capacity (MAC) of films up to 25% with inclusion of only 1% MCC. Morphological analysis via Scanning Electron Microscopy (SEM) confirmed that there was homogeneous dispersion of MCC particles in the films. MCC particles improved the mechanical, thermal, and optical properties of seaweed films making them more suitable for food packaging applications.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 525 ◽  
Author(s):  
Shiyi Feng ◽  
Feng Zhang ◽  
Saeed Ahmed ◽  
Yaowen Liu

In this study, PLA/TiO2 composites materials were prepared via electrospinning and solution casting processes. By testing the mechanical properties, water contact angle, water vapor permeability, and solubility of the composite nanofibers and films, the comprehensive performances of the two types of nanocomposites were analyzed. The results show that maximum tensile strengths of 2.71 ± 0.11 MPa and 14.49 ± 0.13 MPa were achieved for the nanofibers and films at a TiO2 content of 0.75 wt.%. Moreover, the addition of TiO2 significantly cut down the water vapor transmittance rate of the nanofibers and films while significantly improving the water solubility. Further, the antibacterial activity increased under UV-A irradiation for a TiO2 nanoparticle content of 0.75 wt.%, and the nanofiber and films exhibited inhibition zones of 4.86 ± 0.50 and 3.69 ± 0.40 mm for E. coli, and 5.98 ± 0.77 and 4.63 ± 0.45 mm for S. aureus, respectively. Overall, the performance of the nanofiber was better than that of the film. Nevertheless, both the nanocomposite membranes satisfied the requirements of food packaging materials.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1414
Author(s):  
Carola Esposito Corcione ◽  
Raffaella Striani ◽  
Francesca Ferrari ◽  
Paolo Visconti ◽  
Daniela Rizzo ◽  
...  

This work represents an innovative study that, for the first time, explores the possibility to use waste flours to produce thermoplastic polymeric bio-films. To the best of our knowledge, this is the first time that waste flours, derived from bakeries, pizzerias or pasta factories, have been proposed for the production of bio-polymers, as a replacement of neat starch. To this aim, durum waste flour derived from a pasta factory, soft waste flour derived from pizzerias and neat maize starch used as control material were firstly analyzed from dimensional, morphological and chemical points of view. Afterwards, waste flour films were produced by the addition of a nature-based plasticizer, glycerol. Mechanical characterization of the plasticized thermoplastic films, produced by compression molding, evidenced low performances, even in the case of the neat maize starch. In order to improve the mechanical properties, the possibility to include polylactic acid and cardanol-based plasticizer was also investigated. Mass transport properties of all the produced bio-films were investigated by measuring their water vapor permeability and hygroscopic absorption. The durability properties of the bio-films were assessed by accelerated ageing tests, while the bio-degradability of the waste-based films was evaluated by measuring the solubility and the degradation in water. The physicochemical analyses of the novel bio-films evidenced good mechanical properties; specifically, the waste-based films showed a lower hygroscopic absorption and water solubility than those of the blends containing neat starch.


2020 ◽  
Vol 9 (2) ◽  
pp. 88-95
Author(s):  
Baiq Amelia Riyandari

Preparation of PEC chitosan-alginate films incorporated by eugenol has been investigated. Incorporation of eugenol in chitosan-alginate films was conducted by using the different concentration of eugenol including 0.25% 0.5%, and 1% (% w/v). The effect of eugenol incorporation in chitosan-alginate films was investigated through some properties of the films such as tensile strength, elongation at break, transparency value, and water vapor permeability. Meanwhile, the effectiveness of eugenol incorporation as an active compound of the films was investigated from antioxidant activity of chitosan-alginate films incorporated eugenol. Polyelectrolyte complex (PEC) films of chitosan-alginate was occurred through molecular interaction between polycationic groups of chitosan and polyanionic groups of alginate. The formation of chitosan-alginate PEC films was synthesized at pH ± 4.0. Based on FTIR analysis, the ionic interaction between amine groups (–NH3+) and carboxylate groups (–COO¬) formed strongly. Characterization of films also indicated that PEC films of chitosan-alginate incorporated of eugenol was formed. Study showed that PEC chitosan-alginate films had good mechanical properties. Antioxidant activity assay through  fixed reaction time method  using DPPH radical (α,α-difenil-β- pikrilhidrazil) resulted in good percentage of radical scavenging activity (%RSA) from the films. The E3 films which contain 1% eugenol has 55.99% of  RSA value in 96 hours.


Sign in / Sign up

Export Citation Format

Share Document