scholarly journals Unmodified Silica Nanoparticles Enhance Mechanical Properties and Welding Ability of Epoxy Thermosets with Tunable Vitrimer Matrix

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3040
Author(s):  
Anna I. Barabanova ◽  
Egor S. Afanas’ev ◽  
Vyacheslav S. Molchanov ◽  
Andrey A. Askadskii ◽  
Olga E. Philippova

Epoxy/silica thermosets with tunable matrix (vitrimers) were prepared by thermal curing of diglycidyl ether of bisphenol A (DGEBA) in the presence of a hardener—4-methylhexahydrophthalic anhydride (MHHPA), a transesterification catalyst—zinc acetylacetonate (ZAA), and 10–15 nm spherical silica nanoparticles. The properties of the resulting material were studied by tensile testing, thermomechanical and dynamic mechanical analysis. It is shown that at room temperature the introduction of 5–10 wt% of silica nanoparticles in the vitrimer matrix strengthens the material leading to the increase of the elastic modulus by 44% and the tensile stress by 25%. Simultaneously, nanoparticles enhance the dimensional stability of the material since they reduce the coefficient of thermal expansion. At the same time, the transesterification catalyst provides the thermoset with the welding ability at heating, when the chain exchange reactions are accelerated. For the first time, it was shown that the silica nanoparticles strengthen welding joints in vitrimers, which is extremely important, since it allows to repeatedly use products made of thermosets and heal defects in them. Such materials hold great promise for use in durable protective coatings, adhesives, sealants and many other applications.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 919
Author(s):  
Yin Ran ◽  
Ling-Ji Zheng ◽  
Jian-Bing Zeng

Epoxy vitrimers with reprocessability, recyclability, and a self-healing performance have attracted increasingly attention, but are usually fabricated through static curing procedures with a low production efficiency. Herein, we report a new approach to fabricate an epoxy vitrimer by dynamic crosslinking in a torque rheometer, using diglycidyl ether of bisphenol A and sebacic acid as the epoxy resin and curing agent, respectively, in the presence of zinc acetylacetonate as the transesterification catalyst. The optimal condition for fabricating the epoxy vitrimer (EVD) was dynamic crosslinking at 180 °C for ~11 min. A control epoxy vitrimer (EVS) was prepared by static curing at 180 °C for ~11 min. The structure, properties, and stress relaxation of the EVD and EVS were comparatively investigated in detail. The EVS did not cure completely during static curing, as evidenced by the continuously increasing gel fraction when subjected to compression molding. The gel fraction of the EVD did not change with compression molding at the same condition. The physical, mechanical, and stress relaxation properties of the EVD prepared by dynamic crosslinking were comparable to those of the EVS fabricated by static curing, despite small differences in the specific property parameters. This study demonstrated that dynamic crosslinking provides a new technique to efficiently fabricate an epoxy vitrimer.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2020 ◽  
Vol 54 (29) ◽  
pp. 4611-4620 ◽  
Author(s):  
Akm Samsur Rahman ◽  
Chirag Shah ◽  
Nikhil Gupta

The current research is focused on developing a geopolymer binder using rice husk ash–derived silica nanoparticles. Four types of rice husks were collected directly from various rice fields of Bangladesh in order to evaluate the pozzolanic activity and compatibility of the derived rice husk ashes with precursors of sodium-based geopolymers. Silicon carbide whiskers were introduced into sodium-based geopolymers in order to evaluate the response of silicon carbide whiskers to the interfacial bonding and strength of sodium-based geopolymers along with rice husk ashes. Compression, flexural and short beam shear tests were performed to investigate the synergistic effect of rice husk ashes–derived silica and commercially available silicon carbide whiskers. Results show that rice husk ashes–derived spherical silica nanoparticles reduced nano-porosity of the geopolymers by ∼20% and doubled the compressive strength. The simultaneous additions of rice husk ashes and silicon carbide whiskers resulted in flexural strength improvement by ∼27% and ∼97%, respectively. The increase in compressive strength due to the inclusion of silica nanoparticles is related to the reduction in porosity. The increase in flexural strength due to simultaneous inclusion of silica and silicon carbide whiskers suggest that silica particles are compatible with the metakaolin-based geopolymers, which is effective in consolidation. Finally, microscopy suggest that silicon carbide whiskers are effective in increasing bridged network and crack resistance.


2005 ◽  
Vol 77 (1) ◽  
pp. 354-354 ◽  
Author(s):  
Huang-Hao Yang ◽  
Shu-Qiong Zhang ◽  
Xiao-Lan Chen ◽  
Zhi-Xia Zhuang ◽  
Jin-Gou Xu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yuliya Antsiferova ◽  
Nataliya Sotnikova ◽  
Elena Parfenyuk

The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.


2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Christos Panagiotopoulos ◽  
Dimitrios Korres ◽  
Stamatina Vouyiouka

Vitrimers constitute a new class of covalent adaptable networks (CANs), in which thermally stimulated associative exchange reactions allow the topological rearrangement of the dynamic network while keeping the number of bonds and the crosslink density constant. The current study proposed a solvent-free method to synthesize vitrimers by reactive melt mixing using a commercial biobased/biodegradable polyester, poly(butylene succinate), PBS. More specifically, a two-step process was followed; the first step involved reactive mixing of PBS with the crosslinker (diglycidyl ether of bisphenol A, DGEBA) and the transesterification catalyst (Zinc(II) acetylacetonate hydrate, Zn(acac)2) in a twin-screw mini-compounder, in order to incorporate the epoxy groups in the polymer backbone. The second step (vitrimerization) comprised a crosslinking process of the homogenous mixtures in a vacuum oven at 170 °C, resulting in the formation of a dynamic crosslinked network with epoxy moieties serving as the crosslinkers. By tuning the crosslinker content (0–10% mol with respect to PBS repeating unit) and the Zinc(II) catalyst to crosslinker ratio (0 to 1), tailor-made vitrimers were prepared with high insolubility and improved melt strength. Moreover, PBS vitrimers could still be reprocessed by compression molding after the crosslinking, which enables the recycling process. This work was made possible by the “Basic Research Programme, NTUA, PEVE 2020 NTUA” [PEVE0050] of the National Technical University of Athens and is gratefully acknowledged.


2004 ◽  
pp. 240-244
Author(s):  
C. Poncet-Legr ◽  
L. Petit ◽  
S. Reculusa ◽  
C. Mingotaud ◽  
E. Duguet ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Qi Zhu ◽  
Lunyu Ma ◽  
Suresh K. Sitaraman

Microsystem packages continue to demand lower cost, higher reliability, better performance and smaller size. Compliant wafer-level interconnects show great potential for next-generation packaging. G-Helix, an electroplated compliant wafer-level chip-to-substrate interconnect can facilitate wafer-level probing as well as wafer-level packaging without the need for an underfill. The fabrication of the G-Helix interconnect is similar to conventional IC fabrication process and is based on electroplating and photolithography. G-Helix interconnect has good mechanical compliance in the three orthogonal directions and can accommodate the differential displacement induced by the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate. In this paper, we report the wafer-level fabrication of an area-arrayed G-Helix interconnects. The geometry effect on the mechanical compliance and electrical parasitics of G-Helix interconnects have been studied. Thinner and narrower arcuate beams with larger radius and taller post are found to have better mechanical compliance. However, it is also found that structures with excellent mechanical compliance may not have good electrical performance. Therefore, a trade off is needed. Using response surface methodology (RSM), an optimization has been done. Furthermore, reliability of the optimized G-helix interconnects in a silicon-on-organic substrate assembly has been assessed, which includes the package weight and thermo-mechanical analysis. The pitch size effect on the electrical and mechanical performance of G-Helix interconnects has also been studied.


Sign in / Sign up

Export Citation Format

Share Document