scholarly journals The Effect of Chitosan Type on Biological and Physicochemical Properties of Films with Propolis Extract

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3888
Author(s):  
Karolina Stanicka ◽  
Renata Dobrucka ◽  
Magdalena Woźniak ◽  
Anna Sip ◽  
Jerzy Majka ◽  
...  

The aim of the research was to determine the influence of chitosan type and propolis extract concentration on biological and physicochemical properties of chitosan-propolis films in terms of their applicability in food packaging. The films were prepared using three types of chitosan: from crab shells, medium and high molecular weight and propolis concentration in the range of 0.75–5.0%. The prepared polysaccharide films were tested for antimicrobial properties, oxygen transmission rate (OTR) and water vapor transmission rate (WVTR). Moreover, sorption tests and structural analysis were carried out. Microbiological tests indicated the best antimicrobial activity for the film consisting of high molecular weight chitosan and 5.0% propolis extract. Both the type of chitosan and propolis concentration affected transmission parameters—OTR and WVTR. The best barrier properties were recorded for the film composed of high molecular weight chitosan and 5.0% propolis extract. The results of sorption experiments showed a slight influence of chitosan type and a significant effect of propolis extract concentration on equilibrium moisture content of tested films. Moreover, propolis extract concentration affected monolayer water capacity (Mm) estimated using the Guggenheim, Anderson and de Boer (GAB) sorption model. The obtained results indicate that chitosan films with an addition of propolis extract are promising materials for food packaging applications, including food containing probiotic microorganisms.

INEOS OPEN ◽  
2021 ◽  
Vol 4 ◽  
Author(s):  
V. E. Tikhonov ◽  
◽  
B. B. Berezin ◽  
I. V. Blagodatskikh ◽  
E. A. Bezrodnykh ◽  
...  

The methods commonly used for depolymerization of chitosan and preparation of oligochitosan are discussed. A synthetic approach to oligochitosan hydrochloride with a molecular weight below 16 kDa based on the treatment of parent industrial high molecular weight chitosan with a mixture of hydrochloric acid and hydrogen peroxide is described. A series of analytical protocols are used to determine the physicochemical properties and quality of resulting oligochitosan hydrochloride according to the European Pharmacopoeia 4.0.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 591
Author(s):  
Bożena Grimling ◽  
Bożena Karolewicz ◽  
Urszula Nawrot ◽  
Katarzyna Włodarczyk ◽  
Agata Górniak

Chitosans represent a group of multifunctional drug excipients. Here, we aimed to estimate the impact of high-molecular weight chitosan on the physicochemical properties of clotrimazole–chitosan solid mixtures (CL–CH), prepared by grinding and kneading methods. We characterised these formulas by infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry, and performed in vitro clotrimazole dissolution tests. Additionally, we examined the antifungal activity of clotrimazole–chitosan mixtures against clinical Candida isolates under neutral and acid conditions. The synergistic effect of clotrimazole and chitosan S combinations was observed in tests carried out at pH 4 on Candida glabrata strains. The inhibition of C. glabrata growth reached at least 90%, regardless of the drug/excipient weight ratio, and even at half of the minimal inhibitory concentrations of clotrimazole. Our results demonstrate that clotrimazole and high-molecular weight chitosan could be an effective combination in a topical antifungal formulation, as chitosan acts synergistically with clotrimazole against non-albicans candida strains.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3527
Author(s):  
Mona M. Abd Al-Ghani ◽  
Rasha A. Azzam ◽  
Tarek M. Madkour

The principle of breathable food packaging is to provide the optimal number of pores to transfer a sufficient amount of fresh air into the packaging headspace. In this work, antimicrobial microporous eco-friendly polymeric membranes were developed for food packaging. Polylactic acid (PLA) and polycaprolactone (PCL) were chosen as the main packaging polymers for their biodegradability. To develop the microporous films, sodium chloride (NaCl) and polyethylene oxide (PEO) were used as porogenic agents and the membranes were prepared using solvent-casting techniques. The results showed that films with of 50% NaCl and 10% PEO by mass achieved the highest air permeability and oxygen transmission rate (O2TR) with PLA. Meanwhile, blends of 20% PLA and 80% PCL by mass showed the highest air permeability and O2TR at 100% NaCl composition. The microporous membranes were also coated with cinnamaldehyde, a natural antimicrobial ingredient, to avoid the transportation of pathogens through the membranes into the packaged foods. In vitro analysis showed that the biodegradable membranes were not only environmentally friendly but also allowed for maximum food protection through the transportation of sterile fresh air, making them ideal for food packaging applications.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Hang Zhang ◽  
Zhipeng Ma ◽  
Yunpeng Min ◽  
Huiru Wang ◽  
Ru Zhang ◽  
...  

Several kinds of composite materials with phosphotungstic acid (PTA) as the catalyst were prepared with activated carbon as support, and their structures were characterized. According to the Box–Behnken central combination principle, the mathematical model of the heterogeneous system is established. Based on the single-factor experiments, the reaction temperature, the reaction time, the amount of hydrogen peroxide and the loading capacity of PTA were selected as the influencing factors to study the catalyzed oxidation of hydrogen peroxide and degradation of high molecular weight chitosan. The results of IR showed that the catalyst had a Keggin structure. The results of the mercury intrusion test showed that the pore structure of the supported PTA catalyst did not change significantly, and with the increase of PTA loading, the porosity and pore volume decreased regularly, which indicated that PTA molecules had been absorbed and filled into the pore of activated carbon. The results of Response Surface Design (RSD) showed that the optimum reaction conditions of supported PTA catalysts for oxidative degradation of high molecular weight chitosan by hydrogen peroxide were as follows: reaction temperature was 70 ℃, reaction time was 3.0 h, the ratio of hydrogen peroxide to chitosan was 2.4 and the catalyst loading was 30%. Under these conditions, the yield and molecular weight of water-soluble chitosan were 62.8% and 1290 Da, respectively. The supported PTA catalyst maintained high catalytic activity after three reuses, which indicated that the supported PTA catalyst had excellent catalytic activity and stable performance compared with the PTA catalyst.


2020 ◽  
pp. 096739112097350
Author(s):  
Pakeeza Mustafa ◽  
Muhammad Bilal Khan Niazi ◽  
Zaib Jahan ◽  
Sikander Rafiq ◽  
Tahir Ahmad ◽  
...  

An active and intelligent starch-based biodegradable food packaging system is developed in this work. The growing environmental protection concerns have motivated researchers to look for biodegradable yet sustainable products for food packaging. The packaging is able to resist against undesirable bacterial attack and color-change response due to pH change in food. Polyvinyl alcohol and starch are cross-linked with Glutaraldehyde to improve their mechanical strength. Propolis Extract (PE) and anthocyanin (ATH) were added as an active and intelligent material, respectively. Different film formulations were prepared by varying concentration of PE. All film formulations were characterized by SEM, FTIR and XRD. The results proved good compatibility of the film mixture. The mechanical strength and other physical properties like water vapor transmission rate, moisture retention capability, swelling degree and biological leaching ability were investigated. Films containing 20% PE showed the best results alongside maximum mechanical strength of 15.9 MPa. Furthermore, the same formulation has shown maximum zone of inhibition of 25 mm and 20 mm against E. Coli and MRSA, respectively. Moreover, there was a clear color-change response when films were immersed in different pH solutions ranging from 1 to 14. Finally, to validate the potential application of prepared film formulations, films were tested on pasteurized milk and a color-change response is observed along with the anti-bacterial activity. Hence, this active and intelligent food packaging system is capable of inhibiting and alerting food spoilage. [Formula: see text]


2020 ◽  
Vol 165 ◽  
pp. 804-821 ◽  
Author(s):  
Florencia Solana Buosi ◽  
Agustina Alaimo ◽  
Mariana Carolina Di Santo ◽  
Fernanda Elías ◽  
Guadalupe García Liñares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document