scholarly journals Use of Ionic Liquid Pretreated and Fermented Sugarcane Bagasse as an Adsorbent for Congo Red Removal

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3943
Author(s):  
Uroosa Ejaz ◽  
Agha Arslan Wasim ◽  
Muhammad Nasiruddin Khan ◽  
Othman M. Alzahrani ◽  
Samy F. Mahmoud ◽  
...  

A large amount of industrial wastewater containing pollutants including toxic dyes needs to be processed prior to its discharge into the environment. Biological materials such as sugarcane bagasse (SB) have been reported for their role as adsorbents to remove the dyes from water. In this study, the residue SB after fermentation was utilized for the dye removal. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to SB for lignin removal, and the pretreated SB was utilized for cellulase production from Bacillus aestuarii UE25. The strain produced 118 IU mL−1 of endoglucanse and 70 IU mL−1 of β-glucosidase. Scanning electron microscopy and FTIR spectra showed lignin and cellulose removal in fermented SB. This residue was utilized for the adsorption of an azo dye, congo red (CR). The thermodynamic, isotherm and kinetics studies for the adsorption of CR revealed distinct adsorption features of SB. Untreated SB followed Langmuir isotherm, whereas pretreated SB and fermented SB obeyed the Freundlich isotherm model. The pseudo-second-order model fitted well for the studied adsorbents. The results of thermodynamic studies revealed spontaneous adsorption with negative standard free energy values. Untreated SB showed a 90.36% removal tendency at 303.15 K temperature, whereas the adsorbents comprised of pretreated and fermented SB removed about 98.35% and 97.70%, respectively. The study provided a strategy to utilize SB for cellulase production and its use as an adsorbent for toxic dyes removal.

2012 ◽  
Vol 550-553 ◽  
pp. 2138-2141
Author(s):  
Xin Dong Zhai ◽  
Jie Yan Wu

Waste water containing Congo red in industrial production has caused many serious environmental problems worldwide. In this paper, AB-8 macroporous resin was used to remove Congo red from an aqueous solution by adsorption technique under varying conditions of pH, adsorbent dosage, agitation time, temperature and initial concentration. The results show the adsorption kinetics is well described by pseudo-second-order model. It was found that the equilibrium data was better represented by the Freundlich isotherm model.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


2013 ◽  
Vol 726-731 ◽  
pp. 2380-2383
Author(s):  
Li Xia Li ◽  
Xin Dong Zhai

Modified bentonite was used as adsorbent for the methylene blue adsorption in a batch process. Experimental results show that the adsorption kinetics is well described by pseudo-second-order model and the equilibrium data was better represented by the Freundlich isotherm model. The results revealed that the modified bentonite has the potential to be used as a good adsorbent for the removal of methylene blue from aqueous solutions.


2013 ◽  
Vol 726-731 ◽  
pp. 2736-2741
Author(s):  
Ming Da Liu ◽  
Ge Tian ◽  
Liang Jie Zhao ◽  
Yao Sheng Wang ◽  
Lei Guo ◽  
...  

Five blast-furnace slags were used as adsorbents to remove Pb (II) from aqueous solution. Kinetic studies showed that the sorption process was best described by pseudo-second-order model. Among Langmuir, Freundlich and Temkin isotherms, the Freundlich isotherm had a better fit with the simulation of the adsorption of Pb (II).


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Augustus N. Ebelegi ◽  
Nimibofa Ayawei ◽  
Azibaola K. Inengite ◽  
Donbebe Wankasi

Generation-3 polyamidoamine (PAMAM) dendrimer was implanted on silica to produce a very good adsorbent (G-3 PAMAM-SGA). The composite was characterized and used for the removal of Cd(II) ions from aqueous solution. Kinetic data fit the Lagergren pseudo-second-order model and also follow the intraparticle diffusion kinetic model to an extent, which is an indication that the sorption process is controlled by both mechanisms: intraparticle/film layer and adsorption inside the pores/crevices of the composite. Equilibrium sorption data of Cd(II) on G-3 PAMAM-SGA fit the Freundlich isotherm (R2 = 0.9993) which is indicative of multilayered adsorption that occurred on heterogeneous surfaces. The ΔG° values for all temperatures studied were negative, which indicated a spontaneous and feasible process. The result implies that G-3 PAMAM-SGA is a promising adsorbent for microscale scavenging of Cd(II) ions in aqueous solutions.


2021 ◽  
Author(s):  
Mohammad Dinari ◽  
Shirin Shabani

Abstract Herein, we report the synthesis of Cu-Ca-Al/NO3-based layered double hydroxide through co-precipitation methodology. The prepared layered double hydroxide was then modified with itaconic acid. The physicochemical properties of the prepared materials were studied using Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric analysis, and nitrogen adsorption/desorption technique. The prepared materials were then applied as novel adsorbents for the removal of Congo red as a model of an anionic dye from aqueous media. To reach maximum adsorption, the effect of parameters including sample solution pH, adsorbent amount, contact time, and initial concentration of Congo red on the adsorption process was investigated. Kinetic studies were also conducted to study the mechanism of adsorption. In this regard, the kinetic models of pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion were studied. The results showed that the adsorption of Congo red onto Cu-Ca-Al-LDH and LDH-ITA adsorbents followed the pseudo-second-order kinetic model. To evaluate the equilibrium adsorption data, different isotherms including Langmuir, Freundlich, and Dubinin-Radushkevich were also applied. The data revealed that the Freundlich isotherm provided the best fit with the equilibrium data of both adsorbents. Maximum adsorption capacities of 81 and 84 mg g− 1 were obtained using Cu-Ca-Al-LDH and LDH-ITA adsorbents, respectively.


2019 ◽  
Vol 9 (4) ◽  
pp. 506-519
Author(s):  
Xiao Zhang ◽  
Xinyuan Li ◽  
Fan Zhang ◽  
Shaohao Peng ◽  
Sadam Hussain Tumrani ◽  
...  

Abstract Low-calcium fly ash (LC-F) and high-calcium fly ash (HC-F) were used to synthesize corresponding zeolites (LC-Z and HC-Z), then for adsorption of Se(IV) in water. The results showed that c zeolites can effectively adsorb Se(IV). The optimal adsorption conditions were set at contact time = 360 min; pH = 2.0; the amount of adsorbent = 5.0 g·L−1; temperature = 25 °C; initial Se(IV) concentration = 10 mg·L−1. The removal efficiency of HC-Z was higher than the LC-Z after it had fully reacted because the specific surface area (SSA) of HC-Z was higher than LC-Z. The adsorption kinetics model of Se(IV) uptake by HC-Z followed the pseudo-second-order model. The Freundlich isotherm model agreed better with the equilibrium data for HC-Z and LC-Z. The maximum Se(IV) adsorption capacity was 4.16 mg/g for the HC-Z and 3.93 mg/g for the LC-Z. For the coexisting anions, barely affected Se(IV) removal, while significant affected it. Regenerated zeolites still had high capacity for Se(IV) removal. In conclusion, zeolites synthesized from fly ashes are a promising material for adsorbing Se(IV) from wastewater, and selenium-loaded zeolite has the potential to be used as a Se fertilizer to release selenium in Se-deficient areas.


2013 ◽  
Vol 29 ◽  
pp. 34-43
Author(s):  
Puspa Lal Homagai

Cellulose, hemicelluloses and lignin are the main constituents found in sugarcane (Saccharum officinarum) bagasse having many surface active sites containing hydroxyl and/or phenolic groups which are effective for chemical modification. The biowaste was first charred with concentrated sulphuric acid and then the charred aminated sugarcane bagasse (CASB) was prepared by reduction followed by oxidation. The developed bio-sorbent was characterized by SEM, TGA/DTA, FTIR and elemental analysis. Batch adsorption methods were carried out to determine Pb+2 sorption capacities at different pH ranges and sorbate concentrations. The maximum adsorption capacity for Pb+2 was found to be 323 mg g-1 with an efficiency of 98% at pH 4.The experimental data showed a good fit to Langmuir isotherm as compared to Freundlich isotherm models. The kinetics was best fitted with the pseudo-second order model. The adsorption equilibrium was attained within 20 min. The high adsorption capacity and fast kinetics results of the charred aminated sugarcane bagasse indicated that it might be potential adsorbent for the removal of lead from contaminated water. DOI: http://dx.doi.org/10.3126/jncs.v29i0.9235Journal of Nepal Chemical SocietyVol. 29, 2012Page: 34-43Uploaded date : 12/3/2013


2015 ◽  
Vol 72 (7) ◽  
pp. 1051-1061 ◽  
Author(s):  
Zhufeng Lu ◽  
Hongmei Wang ◽  
Jiayou Li ◽  
Lixia Yuan ◽  
Lianwen Zhu

The removal of chromium(III) (Cr(III)) from industrial wastewater by various low-cost methods has been widely investigated. In this paper, a type of bio-adsorbent was prepared using rice straw modified by fermentation and simple chemical treatment. The aim is to detect the adsorption mechanism and characteristics on Cr(III) ions. The analysis shows that the bio-adsorbent possesses four modified characteristics for Cr(III) adsorption. The first one is the acquired physical adsorption involving concave and convex structures. The second one is the effects of the hydrogen bonding surface hydroxyl groups and the metal chromium ion with complexation. The third one is mainly caused by hydrophilic active groups that possess carboxyl and hydroxyl groups during microbial degradation to combine with ions. The final one is the bio-adsorbent had high adsorption for low concentration of Cr(III) ions. The highest removal of around 97.45% was obtained at pH 5.0, bio-adsorption dosage of 0.5 g L−1, and initial Cr(III) concentration of 20 mg L−1. The adsorption process followed the pseudo second-order model (R2 > 0.99), while the isotherms were fitted to the Freundlich equation (68.1926 mg g−1), mainly by chemical adsorption. This study demonstrates the potential of using this biosorbent to remove Cr(III) from both synthetic and industrial wastewater.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
M. Rajan ◽  
G. Alagumuthu

This paper examines the kinetics of fluoride removal from water by the adsorbent zirconium-impregnated walnut-shell carbon (ZIWSC), exploring the mechanisms involved. The dependence of the adsorption of fluoride on the pH of the solution has been studied to achieve the optimum pH value and a better understanding of the adsorption mechanism. The presence of bicarbonate ions in aqueous solution was found to affect the fluoride removal indicating that these anions compete with the sorption of fluoride on adsorbents. The kinetic profile has been modeled using pseudo-first-order model, pseudo-second-order model, and intraparticle diffusion model. The kinetic sorption profiles offered excellent fit with pseudo-second-order model. Adsorption isotherms have been modeled by Langmuir, Freundlich, and Temkin equations, and their constants were determined. The equilibrium adsorption data were fitted reasonably well for Freundlich isotherm model. XRD and SEM patterns of the ZIWSC were recorded to get better insight into the mechanism of adsorption process.


Sign in / Sign up

Export Citation Format

Share Document