scholarly journals Chitosan Reinforced with Kenaf Nanocrystalline Cellulose as an Effective Carrier for the Delivery of Platelet Lysate in the Acceleration of Wound Healing

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4392
Author(s):  
Payal Bhatnagar ◽  
Jia Xian Law ◽  
Shiow-Fern Ng

The clinical use of platelet lysate (PL) in the treatment of wounds is limited by its rapid degradation by proteases at the tissue site. This research aims to develop a chitosan (CS) and kenaf nanocrystalline cellulose (NCC) hydrogel composite, which intend to stabilize PL and control its release onto the wound site for prolonged action. NCC was synthesized from raw kenaf bast fibers and incorporated into the CS hydrogel. The physicochemical properties, in vitro cytocompatibility, cell proliferation, wound scratch assay, PL release, and CS stabilizing effect of the hydrogel composites were analyzed. The study of swelling ratio (>1000%) and moisture loss (60–90%) showed the excellent water retention capacity of the CS-NCC-PL hydrogels as compared with the commercial product. In vitro release PL study (flux = 0.165 mg/cm2/h) indicated that NCC act as a nanofiller and provided the sustained release of PL compared with the CS hydrogel alone. The CS also showed the protective effect of growth factor (GF) present in PL, thereby promoting fast wound healing via the formulation. The CS-NCC hydrogels also augmented fibroblast proliferation in vitro and enhanced wound closures over 72 h. This study provides a new insight on CS with renewable source kenaf NCC as a nanofiller as a potential autologous PL wound therapy.

2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1514
Author(s):  
Ameya Sharma ◽  
Vivek Puri ◽  
Pradeep Kumar ◽  
Inderbir Singh ◽  
Kampanart Huanbutta

Various systematic phases such as inflammation, tissue proliferation, and phases of remodeling characterize the process of wound healing. The natural matrix system is suggested to maintain and escalate these phases, and for that, microfibers were fabricated employing naturally occurring polymers (biopolymers) such as sodium alginate, gelatin and xanthan gum, and reinforcing material such as nanoclay was selected. The fabrication of fibers was executed with the aid of extrusion-gelation method. Rifampicin, an antibiotic, has been incorporated into a biopolymeric solution. RF1, RF2, RF3, RF4 and RF5 were coded as various formulation batches of microfibers. The microfibers were further characterized by different techniques such as SEM, DSC, XRD, and FTIR. Mechanical properties and physical evaluations such as entrapment efficiency, water uptake and in vitro release were also carried out to explain the comparative understanding of the formulation developed. The antimicrobial activity and whole blood clotting of fabricated fibers were additionally executed, hence they showed significant results, having excellent antimicrobial properties; they could be prominent carriers for wound healing applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1192
Author(s):  
Angela Abruzzo ◽  
Concettina Cappadone ◽  
Valentina Sallustio ◽  
Giovanna Picone ◽  
Martina Rossi ◽  
...  

The selection of an appropriate dressing for each type of wound is a very important procedure for a faster and more accurate healing process. So, the aim of this study was to develop innovative Spanish Broom and flax wound dressings, as alternatives to cotton used as control, with polymeric films containing glycyrrhetinic acid (GA) to promote wound-exudate absorption and the healing process. The different wound dressings were prepared by a solvent casting method, and characterized in terms of drug loading, water uptake, and in vitro release. Moreover, biological studies were performed to evaluate their biocompatibility and wound-healing efficacy. Comparing the developed wound dressings, Spanish Broom dressings with GA-loaded sodium hyaluronate film had the best functional properties, in terms of hydration ability and GA release. Moreover, they showed a good biocompatibility, determining a moderate induction of cell proliferation and no cytotoxicity. In addition, the wound-healing test revealed that the Spanish Broom dressings promoted cell migration, further facilitating the closure of the wound.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (07) ◽  
pp. 30-35
Author(s):  
P Goudanavar ◽  
◽  
N Ambhore ◽  
D. Hiremath ◽  
R Udupi

Brimonidine is an anti-glaucoma agent useful in treatment of intraocular pressure. In the present study an attempt was made to formulate ophthalmic inserts of brimonidine tartrate (BT) in combination with polymers like methylcellulose, carboxymethyl chitosan and HPMC. Prepared ocular films were evaluated for uniformity in thickness, weight variation, % moisture absorption, % moisture loss, in vitro and in vivo release studies. The physical characteristics of the films were found to be within acceptable limits. The study confirmed that brimonidine tartrate can be delivered through films made of methyl cellulose, carboxymethyl chitosan and HPMC combination matrix cast with ethyl cellulose (EC). In vitro release study revealed that increasing the proportion of polymer concentration decreased the rate of release of brimonidine tartrate. In vivo release profile of ocular inserts revealed controlled release of drug over a period of 24 h. Optimized formulation CH3 was evaluated for in vivo release characteristics using rabbits as animal model. The optimized formulation CH3 was found to be stable at accelerated storage condition of 40/75 % RH.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 898 ◽  
Author(s):  
Claudia Carbone ◽  
Carla Caddeo ◽  
Maria Aurora Grimaudo ◽  
Daniela Erminia Manno ◽  
Antonio Serra ◽  
...  

Nowadays, an increasing interest in combinatorial drug delivery systems is emerging, highlighting the possibility of exploiting essential oils (EO) for topical applications. This work aimed at developing nanostructured lipid carriers (NLC) for the combined delivery of ferulic acid and Lavandula EO, whose beneficial effects in wound-healing processes have been widely reported. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<150 nm) and a high encapsulation efficiency (>85%) were obtained. The co-presence of ferulic acid and Lavandula EO, as compared to synthetic isopropyl myristate-based NLC, increased nanoparticles’ stability, due to higher ordering chains, as confirmed by morphological and physicochemical studies. An enhanced cytocompatibility was observed when combining ferulic acid and Lavandula EO, as confirmed by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic acid and Lavandula EO significantly promoted cell migration with higher effectiveness in respect to the free drug solution and the carrier without the EO. Taken all together, our results suggest a potential combined effect of the antioxidant ferulic acid and Lavandula EO co-delivered in lipid nanoparticles in promoting cell proliferation and migration, representing a promising strategy in the treatment of wounds.


Author(s):  
Wasim Ahmed ◽  
Dipti Srivastava ◽  
Himani Awasthi ◽  
Bankim Chandra Nandy

The present research work was an attempt to develop, evaluate matrix-type transdermal therapeutic system containing lornoxicam with hydrophilic polymer (HPMC E-5) and turmeric oil (leaf extract) by the solvent evaporation technique. The turmeric oil has been used for two reasons, one is to see whether it act as natural penetration enhancer (replacing chemical enhancers) and also to compare the anti-inflammatory synergism between the drug and the oil itself. The anti-inflammatory activity of turmeric oil has been well documented. The physicochemical compatibility of the drug, polymers and oil was studied by infrared spectroscopy. The results suggested no physicochemical incompatibility between them. Five  transdermal patch formulations (F1 to F5) consists of HPMC E5 (300 mg fixed) and turmeric oil in the concentrations 3%, 4%, 5%, 6% and 7% respectively were prepared. All formulations carried 10% w/v of Polyethylene glycol as plasticizer in dichloromethane and methanol (4:1) as solvent system. The prepared transdermal patches were evaluated for in vitro release, moisture absorption, moisture loss and mechanical properties. The diffusion studies were performed by using modified Franz diffusion cells. The formulation, F3 showed maximum release 97.56% as compared to patch without any penetration enhancer (58.83%).The synergistic activity has been determined by Carrageenan induced rat paw edema test and the results have confirmed the synergistic activity between the drug and turmeric oil. The developed transdermal patches may increase the efficacy of lornoxicam for the therapy of arthritis and other painful muscular conditions. Keywords: Transdermal system, HPMC, Turmeric oil, penetration enhancer, Synergistic activity.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2635
Author(s):  
Caroline Tyavambiza ◽  
Phumuzile Dube ◽  
Mediline Goboza ◽  
Samantha Meyer ◽  
Abram Madimabe Madiehe ◽  
...  

In Africa, medicinal plants have been traditionally used as a source of medicine for centuries. To date, African medicinal plants continue to play a significant role in the treatment of wounds. Chronic wounds are associated with severe healthcare and socio-economic burdens despite the use of conventional therapies. Emergence of novel wound healing strategies using medicinal plants in conjunction with nanotechnology has the potential to develop efficacious wound healing therapeutics with enhanced wound repair mechanisms. This review identified African medicinal plants and biogenic nanoparticles used to promote wound healing through various mechanisms including improved wound contraction and epithelialization as well as antibacterial, antioxidant and anti-inflammatory activities. To achieve this, electronic databases such as PubMed, Scifinder® and Google Scholar were used to search for medicinal plants used by the African populace that were scientifically evaluated for their wound healing activities in both in vitro and in vivo models from 2004 to 2021. Additionally, data on the wound healing mechanisms of biogenic nanoparticles synthesized using African medicinal plants is included herein. The continued scientific evaluation of wound healing African medicinal plants and the development of novel nanomaterials using these plants is imperative in a bid to alleviate the detrimental effects of chronic wounds.


Author(s):  
CLINTON JOSE ◽  
SNEH PRIYA ◽  
DIVYA JYOTHI ◽  
HIMANSHU JOSHI ◽  
CYNTHIA LIZZIE LOBO ◽  
...  

Objective: The objective of the present investigation was to design and characterize a mucoadhesive buccal patch of Nebivolol hydrochloride in order to administer a small dose of a drug to treat hypertension effectively and thereby avoiding disadvantages such as patient noncompliance and low bioavailability. Methods: The buccal patches were prepared by solvent casting method. The polymers used to formulate patches were HPMC K 15 M, PVP K 30, and propylene glycol was used as plasticizer and ethanol as the solvent. The drug-polymer compatibility studied was conducted by FTIR. Results: All the developed Patches had good transparency and stability. All formulated patches showed pH in the range of 6.49 to 7.22, and drug content was more than 90%. The folding endurance value showed that the patches are flexible and non-brittle. The in vitro residence time was found to more than 30 min. Thickness, % moisture absorption, and % moisture loss values were in a normal range. The drug release study was conducted for 8 h, and it was found drug release was decreased with the increase in polymer concentration. The in vitro release profiles of the drug from all the formulations appeared to follow Korsmeyer Peppa's exponential model, and release exponent (n) was found to be more than 0.45 so that the release can be characterized by Non–Fickian (anomalous) diffusion. Conclusion: From the results, it was concluded that drug released from formulated buccal patches follows sustained release pattern, Hence can be used for the treatment of the hypertensive patient.


2019 ◽  
Vol 32 (1) ◽  
pp. 1-8
Author(s):  
N. Sharma ◽  
T. Sinderpal

Physico-chemical properties are crucial characteristics of hydrocolloids as they decide the applicability of them. Rheology of system, flow behaviour and mechanical properties make hydrocolloids suitable for food industry. Modification of consistency or texture properties of functional polymers also controls their sensory characteristics, thereby they become significant essences such as thickener, gelling agents, foaming agent, texture modifier, viscosifier, emulsifier, stabilizer and binder. Industrial and pharmaceutical applications are also controlled by some suitable physico-chemical properties of hydrocolloids. The polysaccharide gum exudates constitute a architecturally distinct class of complex biomacromolecules having unique physico-chemical properties. Due to their good bio/tissue compatibility, non-toxicity, they are extensively used in the field of tissue engineering, drug delivery and wound healing. Chemical and molecular architecture of hydrocolloids in turn controls their physico-chemical and functional properties. Sterculia gum is a substituted rhamnogalacturonoglycan (pectic) type exudate gum used as suspending agent, gelling agents, emulsifier, bulk laxative, dental adhesive, drug delivery agent and wound healing agent. It exhibits high water retention capacity, high viscosity and least solubility. Solutions of sterculia gum are viscoelastic and thixotropic. Sterculia gum has been recommended as effective wound dressing material as it can form a intensely adhesive gel when dispersed in minimum ammount of water. Owing to wide applications and distinctive properties of sterculia gum, present work is an endeavor to summarize the molecular organization, chemical configuration and physico-chemical properties of sterculia gum and the factors affecting physico-chemical properties of sterculia gum.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3353 ◽  
Author(s):  
Oya Ustuner ◽  
Ceren Anlas ◽  
Tulay Bakirel ◽  
Fulya Ustun-Alkan ◽  
Belgi Diren Sigirci ◽  
...  

Thymus sipyleus Boiss. subsp. rosulans (Borbas) Jalas (TS) is a commonly used plant in the treatment of various complaints, including skin wounds in Turkish folk medicine. Despite the widespread traditional use of TS, there is not any scientific report confirming the effectiveness of this plant on the healing process. This research aimed to investigate the effects of different extracts obtained from TS on biological events during wound healing, on a cellular basis. In this context, proliferative activities of the extracts, as well as the effects on wound closure and hydroxyproline synthesis, were determined. In addition to wound healing properties, the antioxidant, antibacterial and anti-inflammatory activities of the extracts were evaluated. Decoction (D) and infusion (I) extracts contained the highest amount of phenolic content and showed the most potent activity against DPPH radical. All extracts exhibited complete protection against the damage induced by hydrogen peroxide (H2O2) by increasing cell viability compared to only H2O2-treated groups, both in co-treatment and pre-treatment protocols. None of the extracts exhibited cytotoxic activity, and most of the extracts from the TS stimulated fibroblast proliferation and migration. All TS extracts exert anti-inflammatory activity by suppressing the overproduction of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO). The most pronounced activity on hydroxyproline synthesis was observed in D extract. In summary, it was observed that TS extracts can promote the healing process by enhancing fibroblast migration, proliferation and collagen synthesis as well as suppressing pro-inflammatory cytokines. The obtained data in this work support the traditional use of TS as a valuable plant-based compound for the treatment of wounds.


Sign in / Sign up

Export Citation Format

Share Document